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Abstract 

Spotting the mesoscale structural dynamics of biochemical processes in vivo with 

atomic-level detail has been a great technological challenge. Since a majority of these occur 

naturally in the solution phase, techniques allowing in-liquid observations are particularly 

attractive to the scientific community. Even though spectroscopic techniques permit 

straightforward solution-phase measurements, they nevertheless fail to provide direct structural 

information. Scattering techniques are mostly applied for such applications. In-liquid sample 

preparation techniques for electrons, which offer a greater scattering cross-section compared to 

X-rays, is quite challenging. The low penetration depth of the electrons imposes an additional 

constraint on the sample thickness. 

This thesis presents the author’s contribution towards the modification of the existing 

liquid cell technology for in-liquid real-space imaging and diffraction. Silicon based micro- and 

nanofabrication technology has been used to produce 20 nm thin silicon nitride windows for 

nanofluidic cells. The behaviour of nanofluidic cells under vacuum was characterized using a 

thin-film interferometer. These measurements provided insight into the deformation occurring 

in the silicon nitride windows, which resulted in an increase in specimen thickness. These issues 

led to the idea of the environmental liquid cell (ELC), where the environmental cell concept 

was combined with nanofluidic cell technology. The newly developed ELC method was shown 

to demonstrate controllable liquid thickness, which allowed imaging of gold nanoparticles, 

polystyrene beads, and ferritin molecules with sub-nm spatial resolution. The same technique 

was utilized to acquire diffraction from liquid water at room temperature. The scattering data 

provided information about the O•••H and O•••O pair distribution function, from which the 

coordination number was extracted and the values were 1.91 and 5,01, respectively. Further, 

the number of hydrogen bonds per water molecule was computed to be 3.8, implying a nearly 

tetrahedral structure of water. 

Despite delivering very promising results, the ELC technique still cannot be used for 

phase contrast imaging which require windows as thin as 10 nm. Moreover, the windows in the 

ELC are prone to failure. These shortcomings prompted the design idea of the elliptical multi-

window liquid cell for phase-contrast imaging.   
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Zusammenfassung 

Die Untersuchung von Strukturdynamik biochemischer Prozesse mit atomarer räumlicher Auflösung in 

vivo ist eine große technische Herausforderung. Da diese Prozesse meist in wässrigem Milieu auftreten 

sind Techniken, die Beobachtungen in flüssiger Form ermöglichen, für Wissenschaftler besonders 

attraktiv. Auch wenn spektroskopische Techniken einfache Messungen in der Lösungsphase erlauben, 

liefern sie dennoch keine direkten Strukturinformationen. Für solche Anwendungen werden meist 

Streuungstechniken eingesetzt. Präparationstechniken für flüssige Proben, welche mittels 

Elektronenmikroskopie oder Elektronenbeugung untersucht werden sollen, stellen im Vergleich zu den 

auf Röntgenstrahlen basierten Analogen eine große Herausforderung dar. Ein wesentlicher Grund 

hierfür ist der größere Streuquerschnitt der Elektronen, welcher zu einer geringeren Eindringtiefe führt 

und somit sehr dünne Proben erfordert. 

In dieser Arbeit wird der Beitrag des Autors zur Modifizierung der bestehenden 

Flüssigkeitszellentechnologie für die Realabbildung als auch Beugung von flüssigen Proben vorgestellt. 

Auf Silizium basierende Mikro- und Nanofabrikationstechnologien wurden eingesetzt, um 20 nm dünne 

Siliziumnitridfenster für Nanofluidikzellen herzustellen. Das Verhalten von Nanofluidikzellen unter 

Vakuum wurde mit Hilfe eines Dünnschichtinterferometers charakterisiert. Diese Messungen gaben 

Aufschluss über die in den Siliziumnitridfenstern auftretende Verformung, die zu einer unerwünschten 

Zunahme der Probendicke führte. Um dieses Problem zu umgehen, wurde die Idee der 

Umgebungsflüssigkeitszelle (ELC) konzipiert. Hierbei handelt es sich im Wesentlichen um eine 

Kombination von Ansätzen herkömmlicher environmental Transmissionselektronenmikroskopie mit 

der Nanofluidik-Zellentechnologie. Die neu entwickelte ELC-Methode erlaubte die Verwirklichung 

eines Flüssigkeitsfilms kontrollierbarer Dicke, was seinerseits die Abbildung von Goldnanopartikeln, 

Polystyrolkügelchen und Ferritinmolekülen mit einer räumlichen Auflösung von besser als einem 

Nanometer ermöglichte. Dieselbe Technik wurde zur Erfassung der Beugung an flüssigem Wasser bei 

Raumtemperatur verwendet. Die Streudaten lieferten Informationen über die O---H- und O---O-Paar-

Verteilungsfunktion, aus denen die Koordinationszahl extrahiert wurde und die Werte 1,91 bzw. 5,01 

betrugen. Weiterhin wurde berechnet, dass die Anzahl der Wasserstoffbrückenbindungen pro 

Wassermolekül 3,8 beträgt, was eine nahezu tetraedrische Struktur des Wassers impliziert. 

Obwohl die ELC-Technik sehr vielversprechende Ergebnisse liefert, konnte sie bisher noch nicht für 

die Phasenkontrast-Bildgebung eingesetzt werden. Hierfür sind Siliziumnitridfenster von etwa 10 nm 

Dicke erforderlich. Darüber hinaus sind die soweit genutzten Fenster in der ELC fragil, und somit 

unzuverlässig. Diese Unzulänglichkeiten gaben den Anstoß zu der Konstruktionsidee der elliptischen 

Mehrfenster-Flüssigkeitszelle für die Phasenkontrast-Bildgebung. 
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1 Introduction 

The contributions of science and technology towards understanding our environment is 

unquestionable. The most bewildering of all the ongoing scientific research, from the author's 

point of view, is the origin and functionality of life. One of the main challenges here lies in 

resolving the structure/function relationship of biological machines and their contribution to 

biological systems. Therefore, solving this problem requires not only obtaining atomic-level 

information from these structures but also gaining insight from their dynamics. Several existing 

techniques show great promise in exploring the structures and the involved dynamics in 

molecules/molecular processes occurring at different length and time scales; Figure 1.1 

highlights a few of these. 

 

Figure 1.1: Time and length scale of different chemical-biological processes highlighting the 

various techniques available. These are utilized in getting more in-depth insight into different 

structures and their related dynamics. 
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Light microscopy is popular for investigating larger processes/structures such as cell 

division in mammalian cells which are submillimeter in size. As we move towards smaller 

spatial dimensions, see Figure 1.1, super-resolution microscopy is available for exploring 

structure/functionalities, which are otherwise not possible with light microscopy due to the 

limited resolution. The third widely used method is cryogenic electron microscopy (Cryo-EM), 

which can resolve sub-nanometer structures with a time resolution of 1 ms, limited by the 

vitrification step. Thereafter, we have X-ray crystallography which can capture structures with 

sub-Angstrom spatial resolution within temporal gating windows ranging from femtoseconds 

(fs) to minutes. The next technique shown in Figure 1.1, is in-liquid imaging. This method can 

be used to capture the structure of a system and its related motions in solution phase. The fact 

that a large number of chemical/biological processes occur naturally in the liquid state has made 

this a top-rated tool. Although the focus of this thesis is in-liquid electron microscopy, some 

background about the capabilities of other techniques will help understand the topic better.  

Light microscopy, particularly the confocal and fluorescence variants, is the most 

ubiquitous of the aforementioned methods and allows in situ imaging of biological structures 

in their native environment [1]–[4]. However, the spatial resolution achieved is limited by the 

wavelength of the illumination source (λ = 400-700 nm) [5]. New developments in the field of 

visible light microscopy, such as super-resolution microscopy, can achieve higher resolutions 

[6]. Stimulated emission depletion microscopy (STED) developed by Stefan Hell works on the 

principle of non-linear optical effects and allows resolutions as high as  35 nm [7]. The 

disadvantage with STED is that it requires high-intensity laser excitation that cannot be used 

for biological samples, as it can damage the specimen. Another variation of optical microscopy 

is Stochastic optical reconstruction microscopy (STORM), which uses photo-switchable 

fluorescent labels and a series of images to construct a model [8]. With a resolution of 20-30 

nm, this technique is still insufficient to gain insight about the atomic-level details of 

biomolecules. Additionally, this technique does not allow label-free imaging which deprives a 

significant class of samples of being investigated [9]–[11].  

With the advent of X-ray crystallography (XRC) in 1912, it was possible to investigate 

the atomic and molecular structure of crystals [12]. Using principles of diffraction, a three-

dimensional electron density map is created by measuring the angles and intensities of the 

diffracted beam while using phasing methods to obtain structure factors. From this map, 

information about the mean position of the atoms in the crystal, their chemical bonds, and any 

disorder present can be extracted. In its early days, XRC was mainly used to study materials 
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like copper sulphate and zinc blend [13]. After the breakthrough discovery of protein 

crystallization, the technique was used to reveal the structure of a multitude of different 

proteins, DNA and other biological macromolecules [14]–[17]. This field has made some 

remarkable progress recently with the advent of time-resolved XRC [18]–[20].  

The concept of X-ray crystallography can be extended with electrons and neutrons as 

similar diffraction patterns are obtained from these. Electron diffraction has been utilized to 

determine structural details of liquid water, as described in Chapter 6 of this thesis. Other 

techniques such as powder diffraction and small-angle X-ray scattering are also available for 

working with polycrystalline materials. However, the information extracted can be less detailed 

than single crystal techniques [21], [22]. In the case of nanocrystals, electron beams are better 

suited probes [23]–[27]. Also, electrons are used to observe atomic motions via ultra-fast 

electron diffraction method, which is capable of providing a picometer spatial resolution and 

femtosecond time resolution, as shown by Siwick et al. in 2003 and Ishikawa et al. in 2015 

[28]–[30]. 

Compared to X-ray crystallography Cryo-EM is a more versatile technique because it 

does not impose any restriction on the size or crystallinity of the specimen and deliver a 

resolution as good as the former. Cryo-EM has evolved as a crucial method for studying the 

structure and dynamics of large macromolecular complexes and viruses [31]–[35]. The material 

of interest is applied to a grid-mesh in the aqueous form, which is then plunge-frozen in liquid 

ethane or a liquid ethane/propane mix [36], [37]. The plunge-freezing step is done to ensure 

that the internal structure of the molecules remains intact in the high vacuum environment of a 

transmission electron microscope (TEM) during the image acquisition process [38]. A true 

atomic-level resolution has been obtained for several biomolecular structures with the 

development of the latest detectors and software technologies [27], [39].  

None of the above-mentioned techniques can, however, provide information about the 

structure and dynamics of specimens in their native environment. This is possible only via in-

liquid imaging and diffraction. X-ray diffraction in liquid was already possible in 1927 [40], 

[41]. Moreover, the time-resolved X-ray crystallography approach has provided a platform to 

observe the structure and its related function in macromolecules [20], [42]–[44]. A long-

standing challenge was to do the same with the electrons, which have fundamental advantages 

over X-rays in how they interact with matter. The problem with electrons is their smaller 

penetration depth compared to X-rays, which restricts the maximum specimen thickness for 

electron imaging /diffraction. Imaging of liquid samples in TEM was first performed in 1934 
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by L. Marton, who successfully imaged biological specimen sandwiched between two thin 

aluminium foils [45]. Despite this very early start, growth in the field was slow as not much 

development was made in the next few decades [46]–[53]. This field only received significant 

attention by the researchers from other areas such as material science and biology, after the 

introduction of microfabrication technology to fabricate silicon nitride/silicon-based liquid 

cells, as reported by Williamson et al., in 2003 [53], [54]. No flow capabilities were present in 

these devices. De Jonge et al. first used liquid cell with flow channels in 2009 to image a whole 

biological cell [53], [55]. Compared to the static design, the construct of a flow liquid cell was 

not much different; the only modification being the addition of external tubing and a syringe 

pump [56]. The flow design was a delight for the researchers interested in applications like in 

situ solvent mixing or reagent flow [53]. However, there were problems linked to this flow cell 

design. Some had specimen drift due to the flowing liquid, as well as window rupture and 

possible contamination [53]. Mueller et al., in 2013, reported a flow liquid cell with active 

feedback to control the sample drift [57].  

In 2012, Park et al. used a graphene liquid cell to capture the growth of platinum 

nanocrystals at high resolution [58]. The sample was prepared by dispensing a small volume of 

the liquid specimen between two graphene sheets [59]. Graphene being impermeable to liquids 

and the thinnest material available is a perfect candidate for high-resolution imaging. While 

GLC’s are excellent candidates for in-liquid imaging/diffraction, their incompatibility with the 

latest micro- and nanofabrication technology make them unsuitable for complex measurements 

involving in situ flow and solvent or reagent mixing experiments. This is the reason why silicon 

nitride/silicon cells are still more popular among research groups as these can easily be mass-

produced in cleanroom facilities and can, therefore, provide an adaptable platform to include 

functions such as electrodes, heating and cooling [53], [54], [60]–[62]. Additionally, silicon 

nitride has unique physical properties such as mechanical strength, and relative inertness, which 

makes it a good window material.  

The main goal of the work presented by the author in this thesis is to improve the 

existing liquid cell technology and contribute to the enduring quest of investigating molecules 

and molecular processes in their native environment. Work has been done from both the 

fabrication and application perspectives to improve current technology. The production of thin 

20 nm liquid cells was followed by the development of the environmental liquid cell (ELC) 

setup. The author has utilized this new ELC TEM technique to perform in-liquid electron 
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imaging and diffraction. Henceforward, the author provides brief details of different chapters 

in this thesis. 

Chapter 2 introduces the concept and methods implemented in other parts of this thesis. 

An introduction to liquid-phase electron microscopy is provided and describing the probing 

tool. In chapters 3 and 4, the author discusses the technical details involved in the fabrication 

and characterization of liquid cells. In Chapter 3, the three essential cleanroom techniques used 

by the author in the development of liquid cells are discussed at length. Detailed fabrication 

steps involved in the fabrication of standard liquid cells are presented. In chapter 4, the basic 

characterizations done to evaluate the performance of conventional liquid cells are discussed, 

and a new design idea for better liquid cells is presented. Chapter 5 describes the environmental 

liquid cell technique developed by the author to overcome the drawbacks of standard liquid 

cells. The technical details of the equipment used are discussed, and the results from the proof 

of principle experiments performed by the author are presented. 

 In chapter 6, results from electron diffraction measurements conducted by the author 

utilizing the environmental nanofluid cell technology developed in chapter 5 are presented. 

Chapter 7 contains work done by the author using negative stain electron microscopy. The 

author has done this work to study the aggregation behaviour of human γS-crystallin, present 

in the human eye lens. While initially intended as an liquid phase transmission electron 

microscopy (LPTEM) project, it was not possible to attain sufficient contrast and resolution 

therewith. In chapter 8, the author provides a summary of the work presented in this thesis. At 

the end of this thesis, preliminary results on real-space imaging performed by the author on 

different biological structures and a list of forthcoming publications are attached as appendixes.   
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2 Transmission electron microscope: a tool to probe liquid 

specimens 

To answer the scientific questions involved in the field of liquid-phase transmission 

electron microscopy (LPTEM), the fundamentals of electrons as a probing tool as well as liquid 

specimen encapsulation technology must be well understood. In this chapter, the author 

provides an overview of the LPTEM, while a substantial part has been dedicated to discuss the 

physical mechanisms involved in probing a specimen via a TEM. Particular emphasis has been 

laid to explain the factors such as resolution/contrast and electron beam damage, which affect 

the quality of the TEM micrograph. The theoretical discussions are limited to the concepts and 

methods relevant to the experimental work done in chapter 5, 6 and 7. Liquid encapsulation 

technology is discussed at length in chapter 3. 

To provide an overview of liquid phase transmission electron microscopy, the state of 

the art is discussed in section 2.1. In section 2.2, the idea of using an electron as a probe as 

opposed to X-rays is discussed. Moreover, the concepts of electron-matter interaction and 

scattering theory are included. Since TEM has been used for all the experimental work covered 

in this thesis; the discussion is focused on this technique, and other well-known electron-based 

tools like STEM, SEM, STM are not included. Section 2.3 deals with a detailed explanation of 

working of a TEM. Furthermore, the practical aspects linked to transmission electron 

microscopy such as resolution, contrast, and electron beam damage are also discussed. As 

mentioned in chapter 1, different characterization techniques have specific specimen 

requirements; for instance, in cryo-EM, the samples must be plunge-frozen. Therefore, an 

essential aspect of transmission electron microscopy is knowing the requirements of an ideal 

specimen beforehand. The author has described this in section 2.4.     

  

2.1 Overview of liquid-phase transmission electron microscopy (LPTEM) 

Liquid phase transmission electron microscopy (LPTEM) emerged as a way to observe 

samples in their native environment while avoiding the need for thin sections, staining, or 

vitrification [63], [64]. This technique involves encapsulation of a thin liquid specimen layer 

between two electron-transparent windows typically fabricated from amorphous silicon nitride 

[65]. The author has described details about the silicon cleanroom technology and how it is 

used to manufacture silicon nitride/silicon liquid cell in chapter 3.  Liquid cell configurations 
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are routinely used in material science to study growth and etching of metal nanoparticles [66], 

[67]. Observing the growth process, in particular, is vital in realizing the desired conditions for 

nanocrystal synthesis [68]–[71]. The liquid cell also finds application in tracking the motion of 

nanoparticles in solution, and these studies are required to get a hold of the physics that dictates 

nanoparticle motion in solution [72]. In this respect, Zheng et al. reported microscopic details 

of nanoparticle motion as the fluid evaporates [68]. Later, in 2013 Muller et al., captured the 

movement of gold nanorods in a flow cell [57]. In the same year, Chen et al. demonstrated the 

3D motion of DNA-gold nanoconjugates in a graphene liquid cell, using double stranded DNA 

[73]. In a similar study, Keskin et al., in the year 2015 showed that the motion of gold 

nanoparticles in DNA-gold conjugate was dictated by hybridization process of single stranded 

DNA molecules [74].  

Another direction in which LPTEM has shown promising outcomes is the self-assembly 

of nanomaterials. Thorough knowledge of the essential mechanisms in the assembly processes 

may help in the large-scale production of nanoparticle arrays required for a suitable device 

architecture [72]. In this regard, Park et al. reported the possibility of forming an ordered 

nanoparticle superlattice from their random distribution by the capillary forces and local solvent 

fluctuations [75]. Self-assembly of gold nanoparticles coated with positively charged CTA+ and 

negatively charged Cl- in solution was shown by Liu et al. [76]. In-liquid imaging also finds 

application in studying the electrochemical processes, which are essential for batteries and other 

energy storage devices [54], [77]–[79]. Holtz et al. investigated the lithium-ion transport 

kinetics and degradation mechanism in LiFePO4 [80]. 

Imaging of biological specimens under physiological conditions is a major scientific 

challenge, key to understanding living system, that is being addressed by several research 

groups using LPTEM. Diana et al. utilized flow cell to successfully image fixed mammalian 

cell with nanometer resolution [63]. Huang et al. used a self-aligned wet cell for bacterial cell 

incubation and obtaining its snapshots in a damp environment in TEM [81]. Mirsaidov et al., 

successfully imaged acrosomal bundles in water in a bonded or self-contained liquid cell and 

obtained 2.7 nm spatial resolution [82]. Varano et al., for the first time, presented time-resolved 

movies of motion of individual biological complexes (rotavirus) moving in liquid [83]. Later, 

in 2017 Besztejan et al., demonstrated sub-cellular structures in fixed and non-fixed  PC3 cells 

[64]. 

To sum up, so far this technique has helped in extending the imaging modalities beyond 

the limits of optical microscopy and has proved especially beneficial for the molecules which 
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cannot be labelled or stained [72]. In practice, however, effects such as bulging of the silicon 

nitride windows, and excessive background scattering from thick (50 nm) silicon nitride make 

it challenging to achieve high contrast and resolution from weakly scattering organic specimens 

[84]. The motivation behind this thesis work is to resolve some of these challenges and 

contribute to this intriguing area of science. In the next four sections of this chapter, the author 

constructs a theoretical outline for the experimental work presented later in this thesis.  

2.2 Electrons as a probe for real-space imaging and diffraction 

Electrons can be used as a probe to investigate the structure and dynamics of inorganic, 

organic and biological materials at the atomic level. Electrons being charged particles get 

scattered by the Coulomb potential of the atomic nucleus. Therefore, the scattering cross section 

of electrons is 106 to 107 larger than matter compared to hard X-rays, which are scattered by 

photon-electron interaction with the electronic orbitals. This strong interaction gives electrons 

a fundamental advantage over X-rays as the scattered electron beam is comparatively more 

intense with respect to scattered particles at the detector plane and carries direct information for 

the position of atoms in a specimen. The higher scattering cross-section makes them more 

suitable for studying the molecular structure of liquid and gaseous samples [85]–[88].   

Two basic requirements to be able to use electrons as a probe are the application of 

sufficient electron dose required to form an image at the desired resolution, and a specimen 

with a thickness that is no more than a few times the elastic mean free path of electrons at the 

relevant energy [29], [89]. The radiation sensitivity of the specimen of interest dictates the 

maximum allowed electron dose. If the sample is radiation hard (e.g. metal nanoparticles), a 

high electron dose can be used. In case of specimens prone to radiation damage such as organic 

or biological samples, lower dose values should be applied. Matters of resolution and contrast 

in the TEM and how they are affected by electron beam induced damage is discussed in sections 

2.3.1 and 2.3.2. The author further illustrates the application of these in chapter 5, in quantifying 

the data obtained using the ELC TEM method. Specimen thickness, typically required to be at 

most a few times of the mean free path of electrons in the material under study, can be easily 

achieved for solid samples. However, this becomes challenging in case of liquid and gaseous 

samples. The standard tools which utilize electrons as a probe are transmission electron 

microscopy (TEM), scanning electron microscopy (SEM) and scanning transmission electron 

microscopy (STEM). Regarding the present thesis work, all imaging and diffraction were done 

on a transmission electron microscope (TEM), and therefore discussion throughout this chapter 

is centered around this technique. 
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To better understand the effects of probing matter with electrons, some theory regarding 

electron matter interaction and scattering theory are included here. The exposure of matter to 

high energy electrons leads to many possible interactions, see Figure 2.1. These can be broadly 

classified into two categories: elastic and inelastic interactions [90], [91]. In the case of elastic 

interaction, no energy is transferred to the specimen. Here, electrons can either pass without 

any interaction (direct beam) or they can get scattered by the electrostatic attraction of the 

positive potential inside the electron cloud. The signal coming from such interaction is mainly 

utilized in TEM and electron diffraction. Diffracted electron waves which are scattered by the 

atomic potential form diffraction patterns on the back focal plane. These patterns can either be 

in the form of bright spots or as diffused rings depending upon the crystallinity of the sample. 

Liquid Specimens, where long-range ordering is absent, give rise to diffuse diffraction patterns. 

In the case of inelastic interaction, energy is transferred from the incident electrons to 

the specimen. Such interactions produce secondary electrons, phonons and 

cathodoluminescence. Furthermore, ionization of atoms by removal of inner-shell electrons 

results in the emission of X-rays and Auger electrons. Signals arising from this type of 

interaction are exploited in analytical electron microscopy. Secondary electrons are used in 

scanning electron microscopy (SEM) as the primary signal. They are also useful in constructing 

high-resolution images of the specimen surface in scanning transmission electron microscopy 

(STEM).  

The notion of scattering cannot be fully understood without a mathematical explanation, 

and therefore the author describes the idea of scattering in terms of the scattering length. These 

have implications in chapter 6. The amount of scattering in the direction of the solid angle Ω is 

f (Ω). The quantity f is the scattering length, which indicates the normalized scattering flux ∆σ 

(Ω) for a solid angle ∆Ω in the direction Ω, for unit incident wave flux density: 

 ∆ =  |"(Ω)|$ %Ω 2.1 

 

The total scattering cross-section is obtained by integrating equation 2.1 and is given by 

  = &|"(Ω)|$ %Ω  2.2 
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The fundamental physics of scattering of electrons from matter is the same as that for X-rays, 

the only significant difference being the strength of scattering, which is higher for electrons. 

Due to the similarity between the two, the scattering cross-section for electrons can be directly 

deduced from that of X-rays. In the Schrodinger equation or the electron wave equation, the 

scattering intensity from point r is determined by the potential function at that point V(r). 

Therefore, the scattering form factor is given by 

 "(*) =  !"#

ℏ% ∫
((+),-.(/+)+%

/ +

1

2
34; 2.3 

 

where me is the mass of the electron, e is the electronic charge, and ћ is the Planck’s constant 

[92]. The interaction between electrons with matter can also be described using the concept of 

the mean free path (mfp). After traversing one mfp, a fraction of 1/e of the electrons remain 

unscattered on average. If the mean free path of electrons in a material/specimen under 

investigation is known beforehand, the thickness of the sample can be tuned to avoid multiple 

scattering. However, it is not always possible to optimise the specimen thickness to get rid of 

the multiple scattering completely; in fact, it is very challenging for specimens in liquid. In 

Chapter 5 and 6 of this thesis, an approach developed by the author to control the liquid layer 

thickness is described. Additionally, the problem of multiple scattering in handling electron 

scattering data on liquid water has also been illustrated in chapter 6. 

Mathematically, the mean free path is given by the following equation, 

 5 =
6

7 8 9:
 2.4 

 

where ρ and W are the density and atomic weights of the sample layer, and NA is Avogadro 

number. The cross-section σ is the sum of inelastic and elastic contributions [93], [94].  
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Figure 2.1 Important interactions between an electron beam and a specimen 

 

2.3 Transmission electron microscope (TEM) 

Electron microscopes are tools utilised to inspect the ultrastructure of an extensive range 

of biological and inorganic samples including microorganisms, cells, large molecules, metal 

nanoparticles and crystals. The idea of an electron microscope followed from the 

groundbreaking discovery by Louis de Broglie that electrons have wave-like properties. The 

term was first used in the celebrated publication of Knoll and Ruska (1932) [95]. Seven years 

later, the first commercial TEM was developed by Siemens AG [96]. The technology has seen 

some significant modification since that time and is still being improved. Currently, state of the 

art systems developed by JEOL, FEI, and Hitachi are available with a resolution as good as 

0.05 nm. 

In a TEM, the transmitted electrons from the specimen form the signal. It can be 

operated in two different modes, bright field, and dark field. In the bright field mode, the 

unscattered or transmitted electrons are allowed while the scattered ones are blocked. Therefore, 

the areas (specimen) with high mass-thickness appear dark as opposed to the bright background. 

On the other hand, in dark field mode, the unscattered beam is blocked, and only scattered 

electrons are selected. Consequently, the specimen which has a higher mass thickness appears 

brighter as compared to a dark background. Bright or dark field images can be obtained in a 
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TEM with a magnification in the range × 1000–×100,000 or greater by adjusting the lenses of 

the microscope [93], [97]. 

Samples can be inorganic, organic or biological and can be imaged in the solid, liquid 

or frozen state. Inorganic solid samples, like metal nanoparticles dried on a TEM grid, are the 

simplest of all and require no additional care such as staining or vitrification. Organic and 

biological specimens are delicate and need either liquid or frozen state to keep their structures 

intact. In material science, the research is mainly focused on inorganic materials, and atomic 

resolution has been achieved already. For the other two types of samples, cryo-EM (cryo-

electron microscopy) has been used to obtain atomic resolution using single particle methods  

[98]–[100]. LPTEM is another technique to capture organic and biological structures and 

processes. Unlike cryo-EM, here the specimens are imaged in their native liquid state. Atomic-

resolution has been achieved with LPTEM for metal nanoparticles but not for the 

organic/biological specimen, as they have poor mass thickness contrast and are sensitive to 

electron beam induced damage [101]. For such cases, single-particle ensemble averaging can 

be performed where large (104) number of poorly resolved particles can be averaged to acquire 

atomic-level information [102]–[105]. In section 5.5, an illustration has been made with ferritin 

molecules of how ELC TEM can be used to collect such a large number of particles in a stable 

liquid environment. Moreover, in appendix 2 the author presents the challenges in repeating the 

same with T7 virus and gold-labelled antibodies.  A TEM can be operated both in imaging and 

diffraction modes. Diffraction modes can also be used to get structural information either from 

crystalline or amorphous specimens [93], [97]. 

A TEM can be broadly classified into three essential sections: (1) an electron gun for 

electron beam generation and a condenser system which focuses the beam onto the object, (2) 

the image-producing system, this consists of an objective lens, movable specimen stage and 

intermediate and projector lenses and (3) image-recording system, which converts the electron 

image into a form noticeable by the human eye. This system is equipped with a fluorescent 

screen (for viewing and focusing) and a digital camera (for permanent records). In addition to 

these, a vacuum system involving pumps, gauges valves, and power supplies is also present 

[106]. 

The three different types of electron sources used in TEM are thermionic, Schottky and 

field-emission source. Table 1 presents the different types of electron sources available in terms 

of the material, current density, brightness, adequate source size, and energy spread. A 

thermionic source is made up of either tungsten or lanthanum hexaboride (LaB6) and emits 



Ph.D. thesis 

 

13 
Sana Azim  Hamburg, 2020 

when heated to high temperatures (2700 K for W and 1400-2000 K for LaB6) using a direct 

current. This process is called thermionic emission. The heating of the LaB6 crystal is done by 

passing a current through wires between which the crystal is mounted, causing thermionic 

emission. Electrons emitted from the cathode are accelerated towards the anode by applying a 

high voltage between the emission source and the anode plate.  

 

Type of Source Tungsten 

thermionic 

LaB6 

thermionic 

Schottky 

emission 

Cold field- 

emission 

Material W LaB6 ZrO/W W 

Current density (��) 

in A/m2 

≈ 104 ≈ 106 ≈ 107 ≈ 109 

Reduced Brightness 

( ) in Am-2sr-1V-1 

≈ 105 ≈ 106 ≈ 107- 108 ≈ 108-109 

Effective source size 

(!") in µm 

≈ 40 ≈ 10 ≈ 0.02 ≈ 0.01 

Energy Spread (#E) 

in eV 

1.5 1.0 0.5 0.3 

 

Table 1: Operating parameters of four types of electron source (taken from reference [91]) 

 

The second type of source used is the Schottky thermal field emission source. Here, the 

potential barrier of the emitter is reduced by the application of a strong electric field which in 

turn eases the emission of thermionic electrons. Finally, the third type of the source used is field 

emitter, which has an extra-fine tip (<100 nm) for electron emission and two different anode 

plates. The function of the first anode plate is to deliver low voltage for the extraction of 

electrons from the tip while the second anode accelerates the produced electrons up to the set 

energy, typically in the 80 - 300 keV range. This type of source has a small beam diameter, and 

higher current density compared to the other two and is therefore well suited for applications 

such as high-resolution phase-contrast microscopy and electron holography [91]. A thermionic 
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LaB6 source equipped (JEM 2100, JEOL) TEM has been used for all the imaging and diffraction 

results in this thesis, as unlike the other two it does not have very stringent vacuum requirement, 

an essential prerequisite for conducting liquid cell measurements. Additionally, it can deliver 

higher total current than Schottky and field emission sources, thereby allowing for a large field 

of view at high current density, albeit lower coherence. The latter is most essential in case of  

phase-contrast imaging, but relatively unimportant for mass contrast imaging.  

The operation of a LaB6 TEM is now described, which differs from a FEG TEM mainly 

in the gun design and vacuum system, the remaining electron optics and the camera system are 

similar. Right after the electrons are emitted from the source, they first pass through a cross-

over point by the first electrostatic lens (Wehnelt cap) and then go through a series of 

electromagnetic lenses namely the condenser lenses, the objective lenses and the projector 

lenses, see Figure 2.2. A customized magnetic field from these lenses is formed to manipulate 

the electron beam coming out of the LaB6 source [107]. The focus and magnification of the 

electron beam are as well managed by tuning the strength of these lenses.  
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Figure 2.2 Schematic of a bright-field TEM 

 

Elaborating the functionalities of these lenses, a condenser lens collects the electrons of 

the first crossover image and focus them onto the sample so that only area being examined is 

illuminated. The purpose of an objective lens is to focus and initially magnify the image. 

Intermediate lenses magnify the image coming from the objective lens, and finally, the projector 

lens further magnifies it and projects it on to the phosphor screen.  In addition to the lenses, the 

TEM column is also equipped with apertures which are defined as circular holes in metal disk 

typically made from platinum or molybdenum [97]. Three different apertures are present within 

the TEM column condenser aperture, objective apertures and selected area aperture. The 
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diameter of these apertures is important; for instance, the condenser-aperture determines the 

size and divergence angle of an electron beam, while the scattering angle of an electron exiting 

from a sample is determined by the objective aperture. The selected area aperture is used to 

regulate the area from which a diffraction pattern is obtained [93]. 

Lenses and apertures together are used to control the divergence or convergence of the 

electron beam, brightness of the beam on the specimen, as well as angle and spot size of 

illumination. The quality of the image formed depends on the overall alignment of the lenses. 

Quadrupole lenses are used as stigmators which can compensate for axial astigmatism. 

Aberrations due to magnetic lenses and apertures affect the resolution.  The details about these 

aberrations will be discussed in the next section. 

After a discussion has been made about image formation, it is also crucial to describe 

the detection and collection of the image/diffraction patterns. Cameras coupled to scintillators 

are commonly used for this purpose. Two such cameras are charged coupled device (CCD) and 

complementary metal oxide semiconductor (CMOS). Both of these uses a scintillator, typically 

single crystal phosphors, to convert electrons to photons which are then transferred to their 

sensor through a fiber optic plate [97]. There are two points of difference between CMOS and 

CCD, which make the former superior to the latter. The first one is that CMOS cameras are less 

susceptible to blooming, spreading of the charge from an oversaturated pixel to nearby pixels.  

The second is that they have a faster readout speed compared to CCD cameras. The use of 

scintillators for electron to photon conversion decreases the detective quantum efficiency of 

CCD and CMOS cameras. This is why many TEMs now incorporates direct detectors which 

are directly exposed to the electron beam and therefore have a higher detector quantum 

efficiency [108].   

The TEM camera used for all the work done in this thesis is the TVIPS TEMCAM F216, 

which is based on CMOS technology with active pixel sensors. It is a 4-megapixel camera and 

covers an image area of 32 × 32 mm2, and it has a 72% fill factor and a read-out speed of 2 × 

10 megapixels/sec @ 16 Bit. The signal-to-noise ratio for a single electron is 14:1 for 120 kV 

and 12:1 for 200 kV. 

2.3.1 Resolution and contrast  

Resolution is defined as the ability of a microscope to resolve two closely spaced objects 

[109]. From the classical Rayleigh criterion for visible light microscopy, the resolution is 

diffraction-limited and is given as 
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Here λ is the wavelength of the radiation, µ is the refractive index of the viewing medium, and 

β is the semi-angle of collection of the magnifying lens [110], [111]. The term µSinβ is called 

the numerical aperture, and this is an essential concept in microscopy as it determines the 

resolving power of a lens. In the case of optical microscopes, the numerical aperture can be set 

to unity, which gives δ (resolution) equal to half the wavelength of light, using equation (2.5). 

For instance, the wavelength range of the visible spectrum is 400-700 nm. If we take λ = 400 

nm, a resolution of 200 nm is obtained, the limit of resolution for light microscopy. The practical 

resolution for a light microscope is about 300 nm [91]. With  developing optical technologies 

like fluorescence microscopy, however, the resolution limit of these microscopes has been 

pushed to tens of nanometers for suitable specimens using super resolution methods [112].  

Resolution in case of high energy electrons (100-300 kV) is not diffraction-limited. 

Instead, it is limited by lens aberrations (chromatic and spherical), signal-to-noise-ratio, and 

stability of the specimen under investigation. The typical value of resolution obtained in a TEM 

is 0.2 nm. Spherical aberration becomes dominant for the case of ultra-thin samples. Due to this 

type of aberration, electrons travelling at a larger angle to the optic axis are focused more 

strongly than those moving closer to the axis.  In LPTEM, the spherical aberration only applies 

to a few cases such as the graphene liquid cell. For such cases, optimizing the objective lens 

angle (α) will give a point resolution (dS), 

 () = *)+, 2.6  

 

where CS is the coefficient of spherical aberration and has values in the range 1-2 mm. If the 

spherical aberration is corrected, a resolution value below 0.08 nm can be achieved. The typical 

spatial resolution for the uncorrected 200 keV TEM is 0.24 nm [89], [111].  

The second type of aberration which limits the image resolution in a TEM is chromatic 

aberration. It is caused by focusing of different wavelengths of electrons to varying distances 

from the lens. It becomes dominant when the TEM has a high energy spread (∆E) or works at 

a low accelerating voltage (E). The factors affecting the energy spread of electrons that form 

the image are lens instabilities, intrinsic properties of the electron source used and inelastic 
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scattering from the specimen under investigation. The image resolution for the cases where 

chromatic aberration dominates is given by 

 (- = +*-

∆2

2
 2.7 

 

Where dC is the chromatic blur which gives the image resolution, and CC is the coefficient of 

chromatic aberration [111]. 

In addition to the two aberrations, another factor affecting the image resolution in TEM is 

astigmatism. Electrons passing through the column of the microscope can get exposed to an 

inhomogeneous magnetic field which may arise due to lens imperfections. These 

inhomogeneities lead to astigmatism and can be corrected by using a compensating field which 

is introduced in the microscope by using stigmators.  

Specimens studied in solution like organic polymers or biological macromolecules are more 

sensitive to the electron dose than inorganic, hard, materials. In case of these samples, the image 

resolution is dominated by electron dose rather than the aberrations. Due to the presence of 

statistical noise, an object can only be detected in an image if the corresponding pixels have a 

signal level above the background counts such that the signal-to-noise ratio (SNR) is greater 

than a value of 3-5 [89], [113]. When imaging an object in liquid, the statistical fluctuations are 

caused by the background scattering from liquid, and detector noise is insignificant. The SNR 

in the image is given by 

 #34 = 5728/� 〈"〉$/� 2.8 

 

Where DQE is the detector quantum efficiency, C = ǀ∆Iǀ⁄˂I˃ is the image contrast, and ˂I˃1/2 

is the noise level [89], [111]. These concepts of resolution have been used to quantify the image 

quality in chapter 5 of this thesis. 

The contrast C in a TEM as explained above is defined as the difference in intensities 

of a point corresponding to an object with respect to other areas like background and is given 

by 

  =  
"� − "$

"$

 2.9  

 



Ph.D. thesis 

 

19 
Sana Azim  Hamburg, 2020 

where �  and �! are the intensities of the object and background, respectively. The contrast in a 

TEM has two main contributions, amplitude contrast and phase contrast. The variation in the 

mass or thickness of a specimen changes the electron-matter interaction, giving rise to 

amplitude contrast given by  

 " = 1 − $%&() 2.10  

 

 Where Q is the total elastic scattering cross-section and ∆t is the change in the specimen 

thickness [93].  

When an electrons pass through the specimen of interest, they are scattered away from the axis 

by elastic nuclear interaction (Rutherford scattering). The elastic scattering cross-section is a 

function of the atomic number (Z) of the specimen, and it increases with increasing specimen 

thickness as the mean free path is constant. This implies regions of the sample with higher Z 

will scatter more electrons than the ones with lower Z, provided they have the same thicknesses. 

On the same note, thicker areas of the specimen will have more scattering than thinner regions 

having the same average Z. When it comes to image interpretation, two different modes exist: 

bright field and dark field.  In the bright field mode, areas with higher Z or thickness will appear 

darker than thinner or lower Z areas. The opposite holds for the dark field images. Another 

essential thing to note is that the images obtained from a TEM are the two-dimensional 

projection of the three-dimensional objects and therefore, should be analyzed keeping this mind 

[93].  

In TEM imaging of amorphous materials like polymers or biological specimens, mass-thickness 

contrast is the primary contrast mechanism and can be enhanced by either shadowing or heavy-

metal staining. The author has provided a short description of the staining method in section 

2.4. In chapter 8 of this thesis, the author has utilized the negative staining technique to study 

the aggregation behaviour of small protein (γS-crystallin) which was otherwise not possible 

with LPTEM due to inferior mass-thickness contrast.  

The second contrast mechanism, which is phase contrast, arises from the interference of 

the scattered and unshattered electron waves. Electrons, after getting scattered from a specimen, 

undergo a phase shift (φ(r)) which is related to the specimen potential by the following equation 
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where a is the interaction constant, Vt(r) is the projected potential of the specimen, t(r) is the 

local thickness of the TEM specimen, and the electron beam is travelling in + z-direction [114]. 

The projected potential Vt(r), which is obtained from holography measurement is related to the 

mean inner potential V0 of a specimen by the following relation, 

 #& = 1
,!#$( )*, 2.12  

 

where A is the area of a projected specimen. Most of the biological macromolecules are made 

up of carbon and hydrogen which have low inner mean potential and therefore have a small 

phase shift resulting in weak phase contrast [115]. The quantification of the amount of phase 

signal being transmitted to the real space wavefunction in the image plane is done using the 

contrast transfer function (CTF). The form of the CTF determines the quality of real space 

images in a high-resolution TEM (HRTEM). In a regular TEM, the defocus contrast can be 

used to enhance the image quality slightly [116].  

Another way to increase the phase contrast in TEM images is by using a phase plate at the back 

focal plane. Phase plates have shown a significant increase in the contrast of biological 

specimens and are a promising candidate for performing liquid phase microscopy of biological 

macromolecules [117]–[121]. Despite the promising phase enhancement, they are not very 

popular, which is due to existing drawbacks such as short lifetime, and lack of hardware and 

software support [120], [122]–[124].  

2.3.2 Electron beam damage 

Electron beam damage is caused by either elastic scattering of incident electrons from 

atoms or inelastic scattering from atomic electrons or a combination of both. Based on these, 

the different mechanisms of electron beam damage are Knock-on damage (for elastic beam-

atom collision), radiolysis (for ionization) and heating [93]. Elastic scattering of primary 

electrons where the energy is directly transferred to an atomic nucleus gives rise to knock-on 

damage. The amount of energy � being transferred, depends on the angle of scattering ( ) and 

is given by, 
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 � = �!"#
2 (1 − %&* ) 2.13  

 

where �!"# is the maximum possible energy exchange corresponding to   = 180°. The 

threshold incident energy below which no knock-on damage occurs is given by 

 �+,- = 511 /03 4[1 + 7�8
561 03]:/< − 1> 2.14  

 

where 7 and �8 are the atomic weight and bulk or surface displacement energy of the scattering 

atom [93], [125]–[127]. For most of the elemental solids, this threshold is above 200 keV for 

bulk displacement but below 200 keV for surface sputtering. This threshold can go even below 

100 keV for many low-Z atoms, and it is for this reason that low voltage TEMs have been 

developed. For instance, demonstration of atomic-scale imaging by the aberration-corrected 

TEM operating at 40 and 20 keV [127]–[129]. 

The electronic excitation and ionization cause radiation damage in liquid or frozen 

specimens in a process known as radiolysis. It results in the formation of radical and molecular 

species such as hydrated electrons (eh
-), hydrogen and hydroxyl radicals (H •, OH •) and 

hydrogen molecules (H2) upon decomposition. The radicals formed are chemically reactive, 

and they recombine to create a series of highly reactive species, known as primary products, as 

given by the following relationship [111], [130], [131] 

 � ! →  $%
&, � ∙, !� ∙, � , � ! , �)!*, �! ∙   2.15  

 

The damage caused by radiolysis is a result of energy transfer from inelastic scattering. 

The intensity of radiation is measured by the amount of energy deposited in the sample. It is 

given in units of gray (absorption of 1 joule of radiation energy per 1 kilogram of matter) [130], 

[132]. The absorbed energy in radiolysis is proportional to the energy deposited per unit volume 

of the specimen. The average energy deposited in a sample with thickness t where multiple 

scattering is present is given by ˂E˃ = (t/Li) Em, and Em is the average energy loss per inelastic 

event, with Li being the mean free path for all inelastic scattering events. Damage due to 

radiolysis can be reduced in several ways. These include making use of low dose techniques 

like avoiding any pre-irradiated area or by sampling multiple copies of the structure being 

investigated at low dose and averaging to get sufficient SNR for image reconstruction. The 

damage can also be decreased by continuously replenishing the specimen by flowing samples 

through a jet or a nanofluidic liquid cell [133]–[135]. Maximizing the signal by using contrast 

enhancer (stain) can also help to keep the radiation damage low [136]. Lowering the specimen 
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temperature increases the critical dose and therefore, as well reduces the radiation damage for 

a given intensity [137]–[139]. 

The damage caused by heating from the beam is a consequence of energy transfer from 

the electron beam to the specimen via the electron-phonon coupling. It can be minimized by 

reducing the incident electron beam current [126], [127], [140]. Electrostatic charging is 

another factor that causes electron beam damage and can be lowered by coating the substrate 

with materials such as carbon or graphene [141], [142]. Most of the specimens studied with 

TEM in this thesis are organic and therefore are sensitive to radiolysis. In chapter 5, the 

radiation damage in polystyrene particles and how working at low doses can reduce it has been 

shown. 

2.4 Specimen requirements for transmission electron microscope 

The required thickness of a specimen for successful imaging in a TEM strongly depends 

on the electron energy and the average atomic number of the sample. As stated in section 2.3.1, 

it should be at most a few times the mean free path of electrons at a particular energy. However, 

for the high-resolution TEM imaging, phase contrast is essential, and it requires the thickness 

to be less than the elastic mean free path of the electron [97]. Traditionally TEM is used with 

solid specimens because handling liquid and gas samples in the high vacuum of TEM is 

difficult. Preparing thin solid specimens for TEM can be done via different methods. A few of 

these are thin-film drop-casting, ultramicrotomy of soft matter bulk specimen, and focused ion 

beam (FIB) milling of samples. Soft matter specimens with low inner mean potential have poor 

mass thickness and phase contrast and therefore require either heavy metal staining or a phase 

plate to be imaged. The author has used drop-casting and negative staining to unravel 

aggregation pathways of human γS-crystallin protein. Therefore, a short description of the 

method has been provided in section 2.4.1. 

The central theme of the present thesis is to capture the structure and dynamics of 

biological/chemical macromolecules or particles in their native state, which is otherwise not 

possible by any of the methods mentioned above. As stated in the first section and also in the 

introduction chapter, liquid cells are used for that purpose. Therefore, in section 2.4.2, the 

author provides insight into different approaches of performing LPTEM. Later, a concise 

introduction to the liquid cell used in this thesis work is given.  
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2.4.1 Thin-film drop-casting and heavy metal staining 

There are smaller protein or other biological molecules which have poor mass-thickness 

contrast. Such samples are usually imaged via thin-film casting in combination with heavy 

metal staining. The sample of interest is taken in solution form and is drop-casted onto TEM 

grids. These grids have a very thin (2-20 nm) layer of carbon on top. Since carbon is a 

hydrophobic material; it is treated in the plasma or glow discharge chamber before dispensing 

the sample. The last step ensures that the drop-casted sample spreads evenly onto the entire 

surface of the grid. This step is followed by staining of the sample to enhance the mass-thickness 

contrast. Heavy metal salts such as uranyl acetate, ammonium molybdate and phosphotungstic 

acid can scatter electrons strongly. Therefore, these can be used as a stain or contrast enhancer. 

They can either be applied to the biological specimens directly (positive staining) or the grid 

background (negative staining) [143].  

The procedure is straightforward, depending on the type of staining. In the positive 

staining technique, the molecules or objects are stained against a light background [144]. In the 

case of negative staining, the stain is applied to the background, which then appears darker 

compared to the molecule of interest [145]. The following is the procedure to prepare negatively 

stained samples. After applying the sample solution onto the grid, it is blotted and, in some 

cases, washed in deionized water. The washing is done to avoid salt crystallization as the 

solution dries on the grid. At this point, approximately 2-4 µl of 1% stain solution is applied, 

blotted and washed [146]–[148]. The negative stain TEM has been utilized by the author to 

study the aggregation mechanism in human γS-crystallin proteins, and this forms the basis of 

chapter 7.  

2.4.2 Handling liquid specimens in TEMs: nanoscale liquid cells 

Liquid samples are difficult to handle as they evaporate in the high vacuum of a TEM 

specimen chamber. Therefore, they require a unique device for encapsulation, called a liquid 

cell. Different materials like stoichiometric and non-stochiometric silicon nitride, hexagonal 

boron nitride and graphene have been tested for making liquid cells [103], [142], [149], [150]. 

The current state of art LPTEM allows atomic resolution imaging of metallic nanoparticles 

[104], [151]–[153]. In-liquid imaging of soft matter and biological macromolecules poses 

challenges due to poor mass thickness contrast and low tolerance to beam-induced damage [66], 

[82], [83], [154]. 

LPTEM can be performed by using various approaches. The three important ones are, 

a hermetically sealed static and flow liquid cell, graphene liquid cell, and open or environmental 
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cell. In a hermetically sealed approach, the liquid specimen is sealed between electron 

transparent silicon nitride windows fabricated on a silicon support. The windows are separated 

by a thin (80-200 nm) spacer [57], [64], [74]. In a hermetically sealed static cell, the sample is 

placed on to the liquid cell chip which is then mounted into the sample transfer arm and finally 

imaged under a TEM [64], [74]. This technique has ease of use and requires small sample 

volume; therefore, it can be used with precious samples. The drawback linked to this approach 

is no in situ sample exchange which is a highly desired capability for beam sensitive samples 

to reduce radiation damage [155]. Beam sensitive protein samples, for instance, can easily get 

damaged after being imaged [74], [76]. Alternatively, a liquid cell with flow capabilities allows 

sample/buffer exchange in situ, but controlling the pressure fluctuations due to continuous flow 

is difficult, thus making the liquid cell windows more vulnerable to breakage. The requirement 

of a large sample volume can also be an issue depending on the inner diameter and length of 

the connecting tubes [57], [149], [156].  

 A graphene liquid cell (GLC) utilizes a single or multi-layer graphene sheet to 

encapsulate liquid specimen [58], [101]. A GLC has shown significant enhancement in 

achievable resolution compared to the silicon nitride/silicon-based liquid cells [101], [157]. The 

downside of this technique is its incompatibility with cleanroom microfabrication. 

Additionally, simple modifications like flow, heat/cooling, and electric biasing are hard to 

perform on these cells [72], [111]. Therefore, despite the very promising results obtained from 

graphene liquid cells, they still cannot replace silicon/silicon nitride-based liquid cells in all 

applications.  

An environmental cell can either be with or without a window. In the window-less 

environmental cell, the TEM specimen chamber is modified by applying a differential pumping 

technique. Here, a series of pumps and apertures are used to change the pressure along the 

column gradually  [158], [159]. The main problem linked to this approach is not being able to 

achieve atmospheric pressure. Because of this, most solvents such as dichloromethane, 

isopropanol or water are incompatible with it [159]. In spite of this, a few LPTEM studies were 

successfully performed using this approach [160], [161]. A windowed environmental cell, on 

the other hand, utilizes two electron transparent membranes separated by a large spacer and 

can, therefore, maintain a much higher pressure. The exchange of fluid and different gases is 

facilitated by external tubing to which an air/fluid reservoir is connected to one end while the 

other end is connected to a vacuum pump to adjust the pressure [162]. The author has utilized 

this very same idea and incorporated it into the latest microfabricated liquid flow cell 
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technology to develop a new environmental liquid cell, which is discussed at length in chapter 

5. The detailed fabrication protocol has been discussed in chapter 3, while some brief technical 

details are provided hereafter. 

The liquid cells used are silicon nitride/silicon devices which can be used both as 

hermetically sealed static liquid cell or as a flow liquid cell. The design idea of these cells has 

been taken from the Miller group while the fabrication was done by SiMPore Inc., USA. These 

comprise of two parts, top and bottom, each having an outer silicon frame with dimension 3 × 

8 mm and a rectangular window in the centre. The windows are made from a free-standing thin 

film of non-stoichiometric silicon nitride. The dimension of window is 200x30 µm2, 200x50 

µm2, 100x30 µm2 and 100x50 µm2. Along with the window, 80 nm thick spacer (5400x250 

µm2) made from silicon dioxide is present on the top part. This spacer is fabricated so that it 

acts as a flow channel. Two flow openings (600x600 µm2) and two trenches (2550x250 µm2) 

are present on the bottom part in addition to the centre silicon nitride window.  

A liquid cell holder, designed in-house, is used to mount the assembled liquid cell with 

fluid specimens. This holder is designed to fit in the goniometer of the TEM and can, therefore, 

be moved, by moving the stage to adjust the focus. Figure 2.3 illustrates different parts of the 

liquid cell holder and the liquid cell. Further details about the liquid holder are given in chapter 

5, where the development of environmental liquid cells is discussed. 
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Figure 2.3 CAD renderings, (A) Liquid cell holder, (B) magnified view near the head of the 

holder, showing flow channels machined for flow. Also, the top and bottom part of liquid cell 

along with O-rings and lid of the holder is shown. (C) Magnified view of the top and bottom 

part, (D) outside/inside view of the top part displaying the 45 degree etch in silicon (454×624 

µm2) on the outside which opens a 30×200 µm2 window on the inside. An 80 nm, 250×5400 

µm2 flow channel is as well shown, (E) shows outside/inside view of the bottom part, displaying 

600×600 µm2 flow openings and two trenches 2550×250 µm2. 
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3 Microfabrication  

In this chapter, basic microfabrication techniques used in the development of liquid cells 

are discussed. The design of the nanofluidic chips used in this thesis was originated in the Miller 

group, and initial fabrication was done at Technical University Hamburg Harburg (TUHH). 

Later, the same design was produced at SiMPore Inc., USA. As the silicon nitride/silicon liquid 

cells based on the standard silicon microfabrication techniques such as thin film deposition, 

photolithography and etching. Therefore, firstly, the author provides a general introduction with 

special mention to the specific designs used in fabricating the liquid cells. Secondly, the author 

gives finer details about the cleanroom fabrication of the cells. A detailed description of the 

same has also been provided in the thesis of Dr. Christina Mueller and Dr. Sercan Keskin [163], 

[164]. 

3.1 Introduction to silicon microfabrication 

Silicon is the backbone material for microfabrication technology due to its natural 

abundance, low cost, standard fabrication protocol, wide range tunability of its resistivity, 

availability of silicon wafers in different thicknesses and sizes, smoothness, flatness and 

mechanical strength [165]. Single crystal silicon wafers find use in the fabrication of almost all 

the micro-electromechanical systems (MEMS) devices. For all the microfabrication work 

presented in this thesis, single crystalline silicon wafers were used. Depending upon the 

fabrication processes involved, the wafer specifications, such as wafer thickness, diameter, 

crystal orientation, doping, and resistivity can be optimized using well developed protocols. 

In the following subsections (3.1.1-3.1.3), techniques involved in the fabrication of the 

liquid cell, such as thin film deposition, photolithography, wet and dry etching, bonding and 

dicing will be discussed briefly. 

3.1.1 Thin-film deposition 

Thin-film deposition techniques can be broadly classified under two categories based 

on the nature of deposition used, Physical vapour deposition (PVD) and Chemical vapour 

deposition (CVD). The former includes a source material that provides the vapour to be coated 

on the substrate. This vapour is then transferred to the substrate and eventually made to 

condense on its surface. The two common types of PVD processes are thermal evaporation and 

sputtering. Sputtering is generally preferred over evaporation due to the availability of a broader 

range of materials as targets. Additionally, the adhesion of the films deposited via sputtering is 
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better when compared to the thermally evaporated films. Silicon dioxide thin-film, 80 nm, 

which works as a spacer in the liquid cell, has been deposited on a silicon substrate using 

sputtering [166], [167]. 

In CVD, the materials to be deposited are present in the reactor as precursor gases. These 

gases are activated as a plasma, which diffuses convectively and gets adsorbed on the surface 

of the substrate, forming a continuous thin film. The byproducts are desorbed and pumped 

away. In this thesis, non-stoichiometric silicon nitride thin film, which works both as an electron 

transparent window in the liquid cell and as a hard mask for etching is fabricated using the CVD 

technique. The quality of the silicon nitride thin film deposited is essential as to some extent it 

controls the mechanical stability of the liquid cell window. The specifications of the deposited 

film are governed by the deposition pressure and temperature. Generally, low-pressure CVD 

(LPCVD) is utilized to obtain better quality (uniformity better than 5%) silicon nitride thin 

films. In the standard LPCVD process for silicon nitride deposition, the operating parameters 

are 0.25-2 Torr pressure, 100-1000 sscm (standard cubic centimetres per minute) gas flow rates 

of the precursor gases and 300-900 ℃ working temperature. Silicon wafer is coated with silicon 

nitride at around 800 ℃ with the following reaction of ammonia and silane [168]–[173], 

 3�� !"#" + 4$#%   →   ��%$) + 6# ! + 6#" 3.1  

 

3.1.2 Photolithography 

Lithography is a process of transferring patterns of geometric shapes via a mask to a 

thin layer of radiation-sensitive material called a resist, which is spread onto the wafer or 

substrate of interest [174]. The type of light source used can decide the minimum feature size 

and the possible resolution that can be transferred onto the substrate. Integrated circuits for 

active devices have a requirement of large feature sizes (>1 µm) with high throughput 

production, and therefore UV-photolithography is generally used for the purpose. On the other 

hand, electron beam lithography is used when smaller features in the range from submicrometer 

down to a few nanometers are to be transferred [175]. 

The two types of optical exposure methods are shadow printing and projection printing. 

In shadow printing, which can be further divided into contact and proximity printing, the mask 

and the substrate wafer are in direct contact, this gives very high resolution, *, which can be 

theoretically given by, 
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 * = ,-. /0 + 1
23 3.2  

 

where , is a constant with value 1.5, 1 is the thickness of the photoresist coating, 0 is the gap 

between photoresist and mask and . is the wavelength of the exposing radiation. Using 

Equation 3.2, for 2 µm thick phot resist, deep UV exposing radiation (~250 nm), s= 0 (contact 

printing), the obtained resolution is ~0.75 µm. Contact printing is generally used for 

dimensions between 5-10 µm [176]–[178]. The patterns for liquid cell window, channel, and 

trenches are large (>5 µm); therefore, contact UV-Photolithography ( . = 365 nm) was used for 

all the fabrication work in this thesis. 

A photoresist is spin-coated on to the surface of the substrate wafer before lithography. 

Depending on the chemical changes occurring in the photoresist on exposure to ultraviolet 

radiation, they can be classified into two categories: positive photoresist and negative 

photoresist. Positive resist is insoluble in the developer solution before exposure. After 

irradiation, the photosensitive compound in the exposed area absorbs energy which changes its 

chemical structure and thereby transforms it into a more soluble compound. Therefore, the 

exposed region becomes more soluble and thus removed more readily in the developing 

solution [179]. 

On the other hand, a negative photoresist are polymers combined with a photosensitive 

compound, when this resist is exposed to radiation the photosensitive compound absorbs the 

radiation, initiating a chain reaction causing cross-linking of the polymer. The cross-linked 

polymer has a higher molecular weight and thus becomes insoluble in the developer. Because 

of this, after the exposure, the unexposed portions are removed [180], [181]. Spin coating of 

the resist is done in a vacuum chuck, which holds the substrate wafer while the resist is 

dispensed on it. The substrate is placed in a vacuum on a hot plate after spin coating to get rid 

of the remaining solvent. The thickness of the photoresist depends on the spinning speed, 

viscosity, and solution concentration [182]. The photoresist for the fabrication of single window 

liquid cells used in this thesis, is a positive resist, HPR-504.  

The patterns on the masks are generated using AutoCAD systems and then transferred 

onto the physical masks which are typically made from material such as glass or quartz, which 

are transparent to deep UV, and covered with an absorbent metallic layer like chromium or iron 

oxide. Patterns to be transferred on the substrate are present on this layer.  Masks can also be 
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classified into positive and negative variants. A positive mask or dark field mask is one where 

the patterns are transparent with a dark background, and on the contrary, a negative field mask 

is one where the patterns are dark with a transparent background. The resolution of the 

transferred features also depends on the proximity between the substrate and mask. Hence, 

direct contact masks are used when aiming for higher resolution. However, the longevity of 

direct contact masks is limited and therefore, is not preferred in the industry [183]. AutoCAD 

was used to design the mask for liquid cell windows channels and trenches, and the physical 

mask was developed in JD Photo Data, UK. Patterns were transparent with dark (chrome) 

background, that is a positive mask was used. 

 

3.1.3 Etching techniques 

The etching is a common technique used in microfabrication of semiconductor devices 

to remove selected portions of a wafer to transfer patterns. Etching can broadly be classified 

into two categories: Wet etching (liquid-based etchants) and dry etching (plasma-based 

etchants). In wet etching, the unwanted portion from the wafer is removed by immersing the 

wafer into a tank of etchant solution. The etchant is a chemical solution that reacts with the 

selected portion and forms soluble by-products. In dry etching, plasma is used to etch the 

material of interest. This technique is comparatively more accurate than wet etching.  

3.1.3.1 Wet etching 

The wet etching process involves three main steps: transport of the etchant to the wafer 

surface, a chemical reaction between the etchant and the exposed surface and removal by 

diffusion of the by-products formed. The etch rate for the wet etch process is defined by the 

slowest of the three stated above, the so-called rate-limiting process. The shapes of the etching 

sidewalls are determined by the orientation of the etched materials and etching conditions. 

Based on this, there are three types of etched sidewall shapes: rectangular, positive sloping and 

negative sloping. Diffusion-limited etching produces sloping edges, but it is not desirable as it 

results in trenching issues. Wet etching of polycrystalline materials like silicon is anisotropic 

because the etchant (KOH) shows an etch rate selectivity 400 times higher in the <100> 

direction over the <111> direction. A cavity with a trapezoidal cross-section is created due to 

anisotropic wet etching of silicon wafer. The bottom of the cavity is the {100} plane while the 

sides are {111} planes. The SiO2 layer is etched using a buffered oxide etch (BOE), and the 

underlying Si layer is etched with KOH. The sidewalls of the developing structure are inclined 

at �= 54.74° to the surface. In Figure 3.1, the structure of anisotropic etching is shown. 
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Figure 3.1: Etched Structure of Si<100> 

  =  
"

#$%�
 3.3  

 

where x is the horizontal component, and d is the wafer thickness. Since � = 54.74°, the value 

of x can be calculated to find the dimension for the etching window. If a backside etches mask 

needs to be designed, the backside window dimensions must be defined as: 

 &� =  !" + 1.41 × #  3.4  

 

where d is the wafer thickness, or the required etch depth [184].  

In this thesis, we have used potassium hydroxide (KOH) to etch Si<100> using silicon 

nitride as the etch mask. This is due to its slow etch rate in KOH (<1 nm/hr.). Further BOE was 

used to pattern the silicon dioxide film. 

 

3.1.3.2 Dry etching 

Dry etching is the most widely used etching method; it can create feature sizes smaller 

than 100 nm and is highly anisotropic. This etching process either works by using chemically 

reactive gases and plasma or by physical methods such as sputtering and ion beam induced 

etching. Dry etching, where a combination of two is used, is known as reactive ion etching. The 

mechanism of dry etching involves introducing a feed gas into the chamber where the gas breaks 

down and forms a plasma, which then diffuses to the surface of the thin film and gets adsorbed. 
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The adsorbed plasma reacts with the film etching away the unwanted portion, thereby forming 

the desired pattern.  

In the final step, the by-product desorbs from the surface and diffuses away by the 

stream of gas. The gases used are all fluorine-based. The high selectivity and high etch rates 

result in vertical sidewalls (high anisotropy) [185]–[187]. Reactive Ion Etching (RIE) can be 

used to etch tens of microns features with a good aspect ratio [184]. In present work, RIE is 

used to etch silicon nitride while deep reactive ion etching (DRIE) is used to pattern structures 

in 100 µm thick silicon wafers. 

 

Figure 3.2 Schematic illustration of Bosch Process 

RIE is a plasma process where radiofrequency discharge-excited ions are used to etch a 

thin film in a low-pressure chamber. RIE is anisotropic (it has lower etched rate laterally and 

vertical sidewalls) because the ion bombardment is directional. RIE of silicon does not depend 

on the crystal plane, and therefore any shape can be fabricated, which is not possible in 

anisotropic wet etching. DRIE is similar to RIE but has a high rate of etching for deeper 

structures. There are two main ways to perform DRIE: Cryogenic and Bosch. In the present 

work, the Bosch process has been used to etch 100 µm features in silicon with vertical sidewalls.  

The principle of the Bosch process is based on alternating etch, and passivation steps, 

Figure 3.2, the gas used for etching is Sulfur hexafluoride (SF6), which creates fluorine radicals 

in high-density plasma. After each etches step, a thin passivating film of fluorocarbon is 
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deposited from cyclic octofluorocyclobutane (c-C4F8). This film prevents further etching and 

therefore, is used at the start of every next step. This passivating film is removed from the 

horizontal surfaces but not from the sidewalls. Because of this the etching mainly occurs from 

the horizontal surface, and the sidewalls remain passivated (highly anisotropic). The repetition 

of etching and passivation steps results in vertical sidewalls with an aspect ratio of 20:1. The 

pulse timings of etching and passivation are typically 5-15 s.  These pulsed etch, and passivation 

steps are the reason the etched structure of sidewalls shows scalloping (undulation). The 

anisotropy, etch rate, selectivity and scalloping all of these depend on the duration and overlap 

of etching and passivation pulses [18]. 

3.2 Fabrication of thin liquid cell 

Compared to the liquid cells previously used in Miller's group [57], [74], the liquid cells 

used in this thesis are 8×3 mm in size and uses thinner (20 nm) low-stress LPCVD silicon 

nitride with four different lateral dimensions 30×100, 50×100, 30×200 and 50×200. The outer 

dimensions of the chips were changed to adapt to the new specimen holder developed in-house. 

At the same time, the thickness was reduced to decrease the background scatter, which should 

be minimum to extract the detailed information about the specimen, as described by the author 

in section 2.3.1. The lateral dimensions were then chosen to suit the thin windows and at the 

same time to maintain a balance between bulging and viewing area. However, the total bulging 

was still too much to get the desired resolution for in-liquid imaging and diffraction (~3 µm). 

Details about bulging calculation have been provided by the author in section 4.1. In Appendix 

1, this issue of window deformation and poor spatial resolution is illustrated. 

To attain excellent resolution for different types of specimens such as inorganic, organic 

and biological materials, additional techniques such as pressure regulation would be required 

[188]. The author has combined these 20 nm thin windowed flow cells into an environmental 

cell concept to develop a new setup called the environmental liquid cell. In chapter 5, the author 

has illustrated the improved resolution attained with it for different types of specimens. 

Figure 3.3 explains the fabrication steps involved in making the liquid cells. Single 

crystalline silicon wafers (300 µm) with low-stress silicon nitride deposited on both sides by 

the LPCVD method is etched anisotropically in hot KOH. The pattern is transferred using UV-

photolithography, and then reactive ion etching is used to remove silicon nitride. The remaining 

silicon nitride is used as a hard mask for KOH etching. Finally, 20 nm thick free-standing silicon 

nitride windows are obtained along with the flow openings. A silicon dioxide spacer 80 nm 
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thick is sputtered on the top part and patterned as a rectangular nano-channel (250 µm× 5400 

µm) using UV-photolithography and buffered oxide etch (BOE). The nano-channels are 

overlapped with 150 µm deep reservoirs which are present to reduce the high flow resistance 

area and help flowing liquid in an 80 nm thick channel with significant internal pressure.  

Flowing in the liquid is not easy, and therefore care must be taken to have the channels 

and windows thoroughly cleaned and the liquid cells should be surface treated to increase the 

hydrophilicity of the windows [164]. The liquid cell parts are cleaned with a mixture of 

concentrated sulfuric acid and hydrogen peroxide at 80 ℃ (piranha solution) for 30 min. This 

treatment not only removes the organic contaminants by oxidizing them but also makes the 

surface of the liquid cell hydrophilic which is very much required to increase the wettability 

[74]. The liquid cells produced at SiMPore Inc., USA were clean and free from organic 

contaminants. Therefore, instead of using piranha, simple plasma glow discharge was 

performed to increase the hydrophilicity of the silicon nitride windows. 

 

Figure 3.3: Microfabrication of top and bottom part of single windowed (standard) liquid cell 

The liquid cells can be used in two different assemblies. The first is a static assembly, 

where small volume (0.5-1 µl) liquid sample is pre-loaded on the liquid cell chips. The second 

can be a flow assembly, which can either be used to flow sample or reagents for capturing the 

reaction dynamics in situ [56], [57], [64]. The flow assembly can also be utilized for single-

shot diffraction experiments where the sample is damaged with an electron beam and needs to 

be refreshed frequently [189]. The author has performed all the in-liquid TEM measurements 

with the nanofluidic (flow) chips combined with the environmental cell concept, discussed in 

chapter 5.  
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4 Challenges using liquid cells: bulging measurements  

The contribution of sample support, for instance, liquid-cell window, in a TEM 

measurement, should be such that the background scattering is minimum. The strong electron 

matter interaction in TEMs, discussed in section 2.2, poses stringent limits on the material 

composition and thickness of the window through which the electron beam must pass. Both of 

these can be tuned to obtain optimal performance [190]. In the present thesis, significant work 

has been done by the author to improve the performance of the liquid cell window. 

Excellent mechanical properties offered by silicon nitride thin film make them good 

candidates for liquid cell windows. The ability of these films to withstand as large as 

atmospheric pressure differential while being suspended over a large area (hundreds of 

micrometers wide) free-standing thin films (< 100 nm) on silicon support, making them ideal 

candidates for the purpose. Their ability to act as a free-standing film is a consequence of being 

able to control the film stress through film stoichiometry during deposition [191], [192]. The 

excellent mechanical properties of these films have made them useful in areas such as 

nanofluidic cells for ultrafast studies on water and as a window material for performing LPTEM 

[57], [74], [193]. 

The free-standing thin films of silicon nitride used as liquid cell windows are non-

stoichiometric (silicon-rich silicon nitride) deposited via the LPCVD technique, as described in 

section 3.1.1. The stoichiometry and in turn, the residual stress in these films can be controlled 

by tuning the ratio of the precursor gases [194]. The tensile residual stress of these thin films is 

responsible for giving them the excellent ability to hold to atmospheric pressure difference. 

When using non-stoichiometric LPCVD silicon nitride thin films as liquid cells, two free-

standing films suspended on silicon support are hermetically sealed with a spacer of desired 

thickness [57]. These films tend to bulge outward under pressure differences. Outward bulging 

drastically increases the sample thickness during TEM measurements. Hence, it is essential to 

characterize the bulging in the liquid cell window and investigate ways to minimize it. 

This chapter has three parts, the first part, focuses on previous work done in the group 

related to liquid cell fabrication and development and the challenges faced. Thereafter, the 

author explains the idea of bulging in liquid cells. In the last section, the author introduces the 

concept of a multiple-window liquid cell for phase-contrast imaging. 
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4.1 Liquid cell design and challenges 

The first closed liquid cell with flow capabilities presented in the Miller group was from 

Maher Harb.  The design included two 40 nm thick windows separated 100nm silicon dioxide 

spacer. The specimen used was diiodomethane (CH2I2), but the attempts to acquire diffraction 

signals from iodine were unsuccessful [195]. The reason for this was the outward bulging of 

silicon nitride windows under the 1 atmosphere pressure difference for such thin windows. This 

work was taken forward by Christina Mueller, who worked to adapt the silicon nitride windows 

(100 × 50 µm) for use in TEM. This design included an active feedback loop to avoid 

fluctuations in the liquid layer thickness during in-situ measurements [163]. Although the 

problem of bulging and continuous flow was still not solved, nanometer spatial resolution was 

obtained on gold and polymer using STEM [57]. This development was continued by Sercan 

Keskin. These liquid cells included 50 nm thin silicon nitride windows with lateral dimensions 

of 200 μm x 100 μm for e-diff experiments and various sizes ranging from 200 μm x 50 μm to 

100 μm x 10 μm for TEM measurements [164]. The problem of the bulging and continuous 

flow continued. Still, it was possible to capture biomolecular and cellular dynamics without 

liquid loss and over viewing times of up to several hours with a static liquid cell [64], [196].  

In this chapter, work has mostly been done to address the issue of bulging. The new 

elliptical multi-window liquid cells promise to solve the two main problems existing in the 

single large window liquid cell. Firstly, the bulging issue is resolved here by introducing small 

(5 -15 µm) elliptical windows. The total bulging in the centre of a 5 µm, 10 nm thin Silicon 

nitride windows is 120 nm. Further details are provided in part 4.3. With this, specimen 

thicknesses less than half the elastic mean free path length, required to achieve phase contrast 

imaging conditions can be attained. The mfp length for water, of 200 keV electrons with zero 

collection semi-angle is 445 nm, this vale is obtained using Equation 2.4, in chapter 2, further 

details about which has been given in section 5.3 [89].  

Secondly, the issue of having a larger viewing area is resolved as this design utilizes 

multiple small windows. Conventional liquid cell design with single windows are restricted to 

have dimensions lower than 200 × 100 µm2. Large single windows are not mechanically stable 

plus an additional upper limit is imposed on their width due to bulging. Subsequently, the 

available viewing area is restricted to a maximum value of 50-100 µm2. The smaller area poses 

issues while performing in-liquid measurements with custom-built machines with large electron 

probe size. Also, it is not ideal for doing in situ measurements of biological systems such as 

mammalian cells.  The windows in the new design, have four times higher viewing area than 

the single-window design. The author is of the view that to be able to understand how the new 
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elliptical multi-window idea is better compared to the conventional single-window design; it is 

very crucial to get hold of the main issues of the latter. Therefore, in the next section, the author 

provides a short theoretical background about bulging in silicon nitride thin film. Measurements 

done by the author to realize the deformation in the conventional single-window liquid cell, 

describer earlier in chapter 3, are also discussed.  

4.2 Bulging in the liquid cell 

Bulging is defined as the deformation of thin membrane inward or outward under a 

pressure difference. In LPTEM the standard liquid cells have windows made from free-standing 

films of LPCVD silicon nitride which bulges outwards increasing the separation between the 

top and bottom membranes which in turn increases the liquid thickness. As a consequence, the 

liquid thickness is greater than the designed spacer thickness, which results in an 

inhomogeneous layer of liquid that is thicker in the centre than towards the edges. Therefore, 

imaging needs to be done around the edges of the window to obtain high-resolution images 

[111]. Another possible method to mitigate the bulging is to intentionally introduce a thick 

spacer (10 µm) with the standard liquid flow cell, in combination with an environmental cell 

concept. This idea, called the environmental liquid cell, is explained in detail in chapter 5 of 

this thesis. 

4.2.1 Model for bulging 

Mechanical properties of thin films and the residual stress in them have proven as 

beneficial concepts for the fabrication of electronic devices, microsensor and liquid cells [197], 

[198].  The techniques used to characterize the mechanical properties for bulk material did not 

work for thin films. To assess the mechanical properties of thin films, Beams established the 

bulge test technique back in 1959 [199]. Thereafter, Vlassak et al. and Small et al. performed 

bulging measurements to characterize thin films of silicon nitride [84], [200]. Deformation in 

the centre of a rectangular or square thin film under a uniform pressure as explained by the 

schematic in Figure 4.1 is given by, 

 ! =  
# $ %& ℎ
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+  
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where P is the pressure, σ0  is the residual stress in the thin film. The thickness of the film is t 

while a is its width. The Young’s modulus, Poisson's ratio and coefficient of residual stress are, 

Y, ν, and c, respectively, and h is the maximum deformation at the centre of the thin film. The 
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author has used Equation 4.1, to compute the bulging (h) in LPCVD deposited low-stress silicon 

nitride thin film (20 nm). These membranes have been used by the author for performing all the 

LPTEM work reported in this thesis. The parameters used are, Y = 235   GPa [164], ν = 0.28, 

σ0 = 147 MPa, P = 100000 Pa, and c = 2 [84]. The residual stress coefficient (c) is a function 

of the membrane aspect ratio [84].  

 

Figure 4.1: Schematic showing bulging (h) in a thin film of a thickness (t) and short edge width 

(2a) under constant pressure (P). 

 Bulging was calculated for two different cases, see Figure 4.2. The A part of the figure shows 

total bulging (2h) versus the width of the window (2a) for thicknesses 10 and 20 nm, while part 

B displays total bulging (2h) versus the thickness of window (t) for widths 30 and 50 µm. 

 

Figure 4.2: Plots calculated using eq. (5.1) showing the variation in total bulging (2h) 

concerning (A) width of short edge (2a) of the window, (B) thickness (t) of the window. 

4.2.2 Measuring the bulging in silicon nitride 

When the light of a particular wavelength is shone on two thin films separated by a 

distance, constructive and destructive interference of the light waves occurs depending on the 

distance between the thin films. Bright or dark fringes similar to Newton rings can be observed 

and can be used to calculate the distance between the centres of thin films. The thickness profile 
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achieved using this method is not absolute; instead, it gives a relative thickness above the offset. 

The author has utilized this technique to measure the relative distance between the top and 

bottom chips of a hermetically sealed liquid cell under a pressure difference of 100000 Pa. The 

measurement was done to confirm the bulging computed using Equation 4.1. 

A thin film interferometer with a green bandpass filter (λ = 550 nm, FWHM = 10 ± 2 

nm) was used to observe the interference of light waves transmitted through the silicon nitride 

windows in a vacuum. This setup was designed by Dr. Sercan Keskin (Miller group) and has 

been extensively described in his thesis [164]. The top and bottom 20 nm silicon nitride/silicon 

liquid cell chips were put together in the liquid cell specimen holder and sealed using Viton O-

rings. The O-rings pressing against the silicon wafer in the mount of the holder can induce 

mechanical stress on the windows. If an inhomogeneous force is applied on the liquid cell, 

windows can deform, resulting in interference. These fringes can be captured using a camera 

attached to the objective piece. When the experiment chamber where the liquid cell holder is 

placed, is evacuated, the number of fringes already present on the windows, increases.  

Figure 4.3 shows the phenomenon of interference, on illumination by a white light 

source, some fraction of the incident light (ray 1) transmits unaltered through the window. In 

contrast, some fraction (ray 2) gets transmitted after being reflected from top and bottom 

windows. If ray 1 travels a distance d, then the distance travelled by ray 2 is 3d when this 

difference of 2d corresponds to a multiple of the wavelength of the light source (λ = 550 nm), 

the rays then interfere constructively and give rise to bright fringes in the centre of the window. 

This relation can be mathematically expressed as, 

 2�� =  ! 4.2 
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Figure 4.3: (A) Schematic illustrating the white light interferometer. A white light source is 

incident on the liquid cell window under vacuum (deformed) the transmitted light after 

travelling the distance undergoes interference which is captured by using an objective and a 

camera, the (B) setup used for calculating the bulging [164]. 

where d is defined as the bulging, n is the refractive index of water, m is the number of fringes 

formed, and λ is the wavelength of the light used. The bulging can be calculated knowing the 

number of fringes formed (m) when the window is under a pressure difference. 

 Figure 4.4 shows two silicon nitride windows with lateral dimensions as 50 × 200 µm and a 

thickness of 20 nm.  1 µl of deionized water was drop cast on the bottom chip, covered with a 

top chip and hermetically sealed with O-rings in the liquid cell specimen holder [201].  In the 

A part of the figure, no bulging occurs as pressure difference is zero, while in part B, bulging 

is observed as the pressure difference is 1 bar (105 Pa). The number of fringes in the case of a 

maximal bulged liquid cell is 16, giving a total bulging (2d) of 3.3 µm. The computed value of 

the total deformation, using Equation 4.1, for a similar window dimension is 3.4 µm. The two 

methods appear to be in good agreement with each other. Therefore, either the calculation or 

the experimental method can be used to assess the deformation of the liquid cell window. 

 A total bulging of 3 µm, implies a specimen thickness seven times of the elastic mean free path 

length for water, in a 200 keV TEM. In-liquid imaging, with these liquid cells, is only possible 

at the edges. The author has looked into this problem via two different approaches, mitigating 

the bulging effects by a reduction in the width of the windows, and using an environmental cell 
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approach which bulging becomes insignificant. The former is discussed in the next section (4.3) 

while the latter has been described in chapter 5. 

 

 

Figure 4.4: Interference images from two 20 nm silicon nitride windows assembled (A) at 1 bar 

pressure (no vacuum), (B) at 4 mbar (vacuum). No interference patterns are observed when the 

chamber is maintained at atmospheric pressure (1 bar). Patterns start to appear as the chamber 

is evacuated, and at P = 4 mbar a maximum of 16 fringes are seen [201]. No further increase in 

the number is observed after this point. 

4.3 Multi-window liquid cell for phase-contrast imaging 

As described in 4.2, for some specific in-liquid imaging/diffraction application, large 

windows are essential. But, the single-window liquid cell cannot promise large viewing area 

due to bulging and mechanical instability. Honeycomb patterns, on the other hand, are known 

for their mechanical strength [202]. Therefore, multiple small windows separated by bars (5-10 

µm thick) were designed with a honeycomb pattern to reduce the total bulging and increase the 

viewing area without compromising on the mechanical stability of the windows [164]. The 

details of the fabrication can be found in the thesis of Dr. Sercan Keskin (Miller group), who 

was involved in the design process. The manufacturing was done in collaboration with Prof. 

Hoc Khiem Trieu and Deybith Venegas-Rojas (TUHH) [164], [198]. The fabrication of 

honeycomb liquid cells was based on the deep reactive ion etching of 100 µm thick single 

crystalline silicon wafer. The honeycomb pattern was transferred onto the wafer, which acts as 

a support structure for the 50 nm thin silicon nitride windows. The first batch of the honeycomb 

liquid cells fabricated was tested in the TEM by the author, see Figure 4.5. Part A shows a low 

magnification view of one large window area with several small multiple windows. Small 

A B
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windows appear to be circular rather than hexagonal, a possible explanation for this could be 

the difference in the etch rates at the centre and the corners. 

Moreover, due to the high aspect ratio of the feature wall, the sidewall passivation, 

discussed in section 3.1, reduces with the depth, thereby increasing the lateral etching. This 

occurs due to the ionic bombardment of the insulating silicon dioxide, resulting in charge 

accumulation near the wall, leading to further widening of the features. The phenomenon 

observed is the notching effect and is a standard problem encountered in silicon 

microfabrication [185]. The issue of not obtaining sharp hexagonal corners can be overlooked 

as circular shape structures can still be considered mechanically robust [198]. However, the 

problem of poor yield is significant; see Figure 4.5 (B), the silicon nitride layer been etched 

away in some regions. A better understanding of the residual stress in the silicon nitride-silicon 

dioxide stack layer is required to obtain defect-free liquid cells. Figure 4.5 displays TEM 

micrographs of gold nanorods sandwiched between two honeycomb liquid cell chips.  The 

micrograph in part C shows one of the intact silicon nitride membranes with gold nanorods 25 

x 85 nm. 

 

 

Figure 4.5: (A) low magnification view of a large (500 x 500 µm) window with multiple small 

windows, (B) higher magnification view of the left micrograph showing etched away nitride in 

some small windows, (C) gold Nanorods imaged in captured in one of the small intact windows. 

The author has contributed towards a similar multiple small window liquid cell design 

which is being manufactured in collaboration with an external company. The fabrication design 

feasibility and stress and bulging characterization were done by the author, Mr. Josef Gonschior 

(Engineer, Miller group), Drs. Günther Kassier, Dr. Eike Christain Schulz, Ms. Lindsey 

Bultema and Dr. Robert Bücker. Thereafter, the author describes the design feasibility in terms 
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of fabrications steps involved, stress and bulging computation using Finite element method 

(FEM). The FEM simulations were performed by Mr. Josef Gonschior with inputs from the 

author. 

The design idea for multiple small windows, called elliptical multi-window liquid cell, 

considers all the previous issues addressed by the honeycomb liquid cell such as bulging, 

mechanical stability and viewing area. Besides, it also aims to solve the background scattering 

problem by reducing the thickness of the silicon nitride film from 50 to 10 nm. According to 

the design, each liquid cell would comprise of a large rectangular window, with multiple small 

elliptical windows patterned on silicon which supports the very thin (10 nm) free-standing 

silicon nitride. The shape of small windows is chosen to be elliptical because such features are 

stable in terms of mechanical stability, can be easily fabricated, and additionally, they allow 

ease of alignment of top and bottom parts. The dimensions of the small elliptical windows and 

silicon support structures are chosen to minimize the bulging.  

The deformation was calculated for the 10 nm silicon nitride on 30 µm thick silicon 

with lateral dimensions of 600 × 400 µm2, having multiple miniature elliptical windows with 

sizes 30 µm × 5 µm, 30 µm × 10 µm, and 30 µm × 15 µm, where 30 µm was the diameter of 

the major axis and was kept constant. The maximum bulging for two such windows, Figure 4.6 

(A), was found to be 44 nm. The maximum stress at the edge was 14 Mpa, see Figure 4.6 (B).  
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Figure 4.6 (A) is the deformation and (B) shows the stress on a single large window (600 × 400 

µm2) with multiple elliptical windows and a 10 nm free-standing silicon nitride. The maximum 

bulging is seen at the centre of the window (red portion) which reduces as we move towards 

the edges. The maximum value of stress is seen in a small region near the centre edge. 

 

The fabrication of the design is ongoing. Therefore, the details cannot be provided at 

this time.  Figure 4.7 presents the design idea of multiple-window liquid cell showing top-

bottom overlap in small elliptical windows. 
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Figure 4.7 (A) schematic of multi-window liquid cell (B) set of small elliptical windows 
showing top-bottom overlap. 
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5 Development of environmental liquid cell for improved in-liquid 

imaging and diffraction  

In this chapter, the author illustrates a technique developed to achieve the primary goal 

of her PhD work, i.e., performing in-liquid electron imaging and diffraction. The method is 

called the environmental liquid cell (ELC) TEM and was developed by the author with the help 

of a post-doctoral researcher Dr. Günther Kassier and members of Scientific Support Unit for 

Machine Physics (Friedjof Tellkamp and Jan-Philipp Leimkohl) of the Max Planck Institute for 

the Structure and Dynamics of Matter. Real-space imaging was possible for different types of 

specimens with improved resolution. Proof of principle measurements were done on gold 

nanoparticles, polystyrene, and ferritin molecules.  The obtained results have been compared to 

previously reported work to demonstrate the success of this technique. Static diffraction on 

liquid water was also performed and has been presented by the author in chapter 6. A significant 

portion of this chapter is based on a submitted manuscript in which the author shares the first 

co-authorship with Lindsey Bultema. However, the work reported here does not include the 

part contributed by Lindsey Bultema. 

The work has been portioned in six different parts. In the beginning, the idea of 

environmental liquid cell design and technical details are discussed. The sample preparation 

required with this method is slightly different from the conventional liquid phase TEM 

(LPTEM) and is discussed in the next part. Another very crucial concept is the estimation of 

liquid thickness, and data analysis performed to extract the useful information from obtained 

micrographs. This has been described in the third section. The analysis was performed with Dr. 

Michiel de Kock, who was a post-doctoral researcher in the theory division of the Miller group. 

LPTEM performed on different specimens are discussed in the next two parts. In the last 

section, the success of ELC TEM in terms of attainable resolution and dose sensitivity over the 

conventional LPTEM is highlighted. 

Environmental TEM (ETEM) is one of the many ways to perform LPTEM. It allows 

the observation of catalytic reactions under low vacuum conditions [203], [204]. LPTEM keeps 

the specimen immersed in a liquid layer of a thickness equal to, or larger than, the specimen 
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dimensions, while ETEM merely engulfs it in a highly humid environment [54], [205]. Inayoshi 

et al. developed a modified environmental cell capable of maintaining a liquid layer of roughly 

100 nm thickness in an assembly which consisted of two standard carbon TEM grids separated 

by a spacer of desired thickness (100-500 µm). The pressure between the grids was controlled 

by adjusting the flow rate of humid air, thereby adjusting the liquid layer thickness [162]. 

However, this design lacks the ability of in-situ flow, thus preventing the exchange and 

replenishment of the sample/liquid. 

The ELC technique developed by the author, combines the approach of Ianoshi et al. 

with our liquid flow cell technology, thus merging the high resolution and contrast potential of 

ETEM with the ease of use and high reproducibility of silicon nitride-technology [57]. A key 

advantage of this approach is its simplicity since merely a 10 µm polyimide spacer (Kapton) is 

added between the silicon nitride nanofluidic cells. Additionally, our ELC TEM method enables 

the exchange of buffers or reagents during measurements through a syringe pump injection at 

the inlet port of the ELC (in-situ loading). This feature has been demonstrated by 

establishingproper control of the liquid layer thickness in the ELC with gold particles (AuNPs). 

The resultant favourable imaging conditions were utilized to demonstrate imaging of weak mass 

thickness contrast specimens i.e., polystyrene (PS) particles and ferritin molecules at a 

maximum electron dose rate of 2 e/Å2/s. 

5.1 The environment liquid cell 

ELC setup consists of the nanofluidic cell, the sample holder and the humidity control 

apparatus (Figure 5.1).  The nanofluidic chips were produced by SiMPore Inc., USA using the 

design described in section 3.2. A fully assembled nanofluidic cell consists of two silicon chips 

with a silicon nitride window, one with flow openings (bottom) and one without (top). Similar 

to Muller et al., a trench is running between the flow openings, to reduce flow resistance and 

improve window longevity [57]. The assembly of these custom nanofluidic cells into an ELC 

was done by first glow discharging the bottom chips for 30 seconds; details about this has been 

provided by the author in section 5.2. Next step was the placement of a 10 µm thick Kapton 

spacer between the silicon chips to allow airflow through the sample window area. The Kapton 

spacer was an essential modification over traditional liquid cell assembly. After placing the 

Kapton-spacer on the bottom-chip, 0.5 µl of sample is applied directly onto the silicon nitride 

window area with a pipette. Finally, the ELC is closed with a top-chip, and assembled in our 

custom-built ELC holder, consisting of a head land arm piece.  
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The ELC holder has an aluminium headpiece equipped with a lid for mounting the 

nanofluidic chip (3 x 8 mm), a port for the electron beam as well as inlet and outlet flow ports 

with internally machined flow channels.  Fluoroelastomer (FPM) O-rings are placed on the 

three ports, and surrounding periphery of the cavity wherein the chip assembly is mounted (8.5 

x 0.8 mm). The aluminum lid has three grooves for FPM O-rings (0.97 x 0.33 mm) and four 

screw holes. The ELC assembled bottom is covered with the lid and secured in place with four 

titanium screws (corners). Upon assembly, all O-rings are aligned, and connections are sealed 

for vacuum compatibility. A Polyether ether ketone (PEEK) piece joins the head to the arm of 

the ELC holder. The flow channels are connected to the outside via PEEK tubing (1/16 in. x 

0.020 in.). Additionally, the head is equipped with a resistive heating element and two PEEK 

tubes connected to a water chiller enabling temperature control from 4-100 °C, an essential 

requirement for many biological specimens.  

 

Figure 5.1: Environmental Liquid cell setup, (A), Schematic of the ELC setup which consists 

of a liquid cell specimen holder with an ELC inside. The inlet port of the holder is connected 

to a flowmeter and a humidity reservoir while the outlet is connected to a vacuum pump. Two 

fine-tuning valves are attached on both sides to control the flow precisely, (B) An expanded 

view of the specimen holder (C) An expanded view of the ELC and (D) Magnified view of the 

window area in the ELC.   
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Connecting the humid flow control apparatus to the ELC produces a moist air stream 

that engulfs the specimen, resulting in a liquid layer of a controllable thickness (Figure 5.1). 

PEEK tubing connects the inlet port to a humidity reservoir and the outlet to a vacuum pump. 

The pressure and humidity flow are observed with the connected vacuum gauge and a flow 

meter. By adjusting the flow speed and pressure with the two fine-tuning valves, the liquid layer 

thickness on the bottom silicon nitride-window is controlled via a combination of liquid 

displacement and condensation/evaporation effects. Specimen solutions and reagents can be 

loaded either by pre-assembly directly on the silicon nitride-window, or post-assembly via flow, 

thus opening the possibility of triggering in-situ reactions.  

5.2 ELC sample preparation  

Gold nanoparticles were purchased from Sigma Aldrich GmbH and were diluted 20 

times in DI water before use. An aqueous suspension of polystyrene nanoparticles of size 0.1 

µm was purchased from Sigma Aldrich. Horse spleen ferritin was procured form Serva 

Feinbiochemica, Heidelberg. Polyimide (Kapton) spacers were laser cut from 10 µm Kapton 

sheet into 3x 8 mm rectangles, with a 5.4x 0.5 mm cut-out in the centre. The outer dimension 

and inner cutout match the nanofluidic chip specifications. Laser cutting was conducted with a 

Protolaser U3 (LPKF, Hannover); the maximum power of the laser is 6 watts at a wavelength 

of 355 nm.  

Before assembly, the nanofluidic (bottom) chips were selectively glow discharged in a 

custom-designed 3D-printed holder. The holder consisted of two parts, a base, and a lid. The 

chips were arranged 2x2 on the base and covered with the lid which selectively exposes the 

window and channel areas. Subsequently, the chips were glow-discharged for 30 s at 35 mA in 

a glow discharger (Balzers CTA 010, Balzers Union, Switzerland). This resulted in selective 

wetting of the window and channel areas. TEM imaging was performed in the bright-field mode 

in a JEOL JEM-2100 operated at 200 keV and fitted with a TVIPS TemCam F216 camera 

without an energy filter. All experiments were performed at room temperature (approximately 

23°C). The dose calibration was done using the absolute count values of the camera image, 

which were calibrated from the phosphor screen current readout. 

5.3 Liquid layer thickness determination 

It is crucial to know the thickness of the liquid layer in any LPTEM measurement so 

that one can tune it as per the requirement. The liquid layer thickness determination in the ELC 

was done by measuring the bright field scattering contrast, which is the fraction of electrons 
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that are not scattered outside the objective aperture collection angle. In the single-scattering 

approximation, the ratio of detected electron intensity with sample layer in the beam path (I) to 

that without the layer (I0) is given by:  
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where t is the thickness of the material. The effective mean free path L (θ) for scattering to an 

angle of θ or higher is given by: 
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with Avogadro’s number NA,the mass density ρ, the atomic weight W, and the scattering cross-

section σ (θ). Note that the scattering cross-section and the mean free path are dependent on the 

collection semi-angle θ. The mean free paths were calculated by numerical integration of the 

scattering cross-section for silicon nitride and water [97], [206]: 
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where aH = 0.529×10-10 m (Bohr radius), λ = 2.51×10-12 m (electron wavelength at 200 keV), 

E0 = 511 keV (electron rest mass-energy), E = 200 keV (accelerating voltage of the TEM used). 

Elastic and inelastic scattering factors for nitrogen and silicon are denoted by fN , SN , fSi, and  

Ssi, respectively, and were taken from the literature [122], [206]. The momentum transfer Q = 

2πθ/λ is determined by the characteristic value 
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where Z = 10.6 (effective atomic number for silicon nitride). Note that the scattering cross-

sections and the mean free path are dependent on the collection semi angle θ and the electron 

energy. The collection semi angle of the objective aperture used in the present study is given 
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by θ = 12.6 mrad as determined by directly imaging the objective aperture in diffraction mode. 

The detector camera length was calibrated using diffraction rings from a polycrystalline 

aluminum film. The scattering cross-section in case of water was directly taken from Wang et 

al., the elastic and inelastic cross-sections computed for silicon nitride and water are tabulated 

in Table 2 [206]. 

Collection 

semi-angle 

(mrad) 

σSiN, el, σSiN, inel (nm2)       

× 10-5 

σwater, el, σwater, inel (nm2)      

× 10-5 

Total mfp Si3 N4 

(nm) 

Total 

mfpWater 

(nm) 

0 10.9, 15.1 6.7, 13.0 40 152 

12.6 4.71, 0.79 3.3, 0.91 190 718 

 

Table 2.  Scattering cross-section and mean free path of silicon nitride and water. It shows total 

(θ = 0) and effective (θ = 12.6 mrad) elastic and inelastic scattering cross-sections and mean 

free paths for silicon nitride and water. 

For the ELC system, by comparison with parallax measurements, we found fair 

agreement with the values obtained by this method, where the thickness was underestimated by 

21% if calculated form the intensity ratio [111], [114], [207]. Still, the intensity ratio method 

provides a feasible means for thickness estimation without requiring any special equipment.  

The data analysis was performed to extract useful information from a micrograph which 

is a noisy image of multiple particles of roughly similar shape and no preferred orientation. To 

observe the average structure of the particles, the power spectrum of the micrographs was 

computed, i.e. the 2D Fourier transform of the images was multiplied with its conjugate. Its 

useful properties, such as insensitivity to particle locations and the noise contribution generally 

conforming to a uniform or power law, makes the power spectrum a beneficial data reduction 

and filtering tool. The spherical symmetry of the particles is preserved in the power spectrum, 

allowing further data reduction by computing the radial average of the 2D power spectrum. 

Assuming there are no correlations between signal and noise, these components become 

additive, and an empty micrograph can be utilized to estimate a spectral signal to noise ratio as 

a function of spatial frequency �, 

  !"#$% ($)!*[�] =  
|+[�]|, − |.[�]|,

|.[�]|,
 5.6  
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with the radial average of the Fourier transform of the micrograph with particles, �[�], and the 

micrograph without particles,  [�]. As this quantity is computed on the whole image and not 

for individual particles of known or inferred shape, it does not represent a true signal-to-noise 

ratio. The true signal-to-noise ratio is dependent on the degradation of the signal due to the 

water layer, which we do not examine here. However, we can use it as a comparative measure 

of image quality, defining the total signal as the sum of the signal ratio. 

ImageJ and Origin (Origin Lab Corp.) software was used to determine the particle size 

of the PS particles. Particle picking was done in ImageJ, and exported to Origin, where box 

plots were generated to determine the size of the particles. 

 

5.4 Liquid layer thickness and spatial resolution 

With standard LPTEM techniques, the bulging of the silicon nitride window, which has 

been described by the author in section 4.2, limits the viewing area to regions close to the edges. 

Pressure control setups can regulate the bulging, ensuring a path length optimal for imaging. 

However, the imaging area is still restricted to the boundaries [188]. In the ELC, bulging is 

irrelevant due to the 10 µm Kapton spacer dominating the expected deformation of a 

200x30x0.02 µm3 silicon nitride window [74]. Additionally, the pressure control system 

regulating the condensation of the humid air on the sample-containing bottom window allows 

for the imaging of the whole window. Adjusting the Z position of the specimen holder and 

focusing on the thin liquid layer at the bottom ensures the highest resolution with TEM [156].  

To benchmark, the spatial resolution in ELC with respect to the water layer thickness, 

10 nm Gold nanoparticles (AuNPs) was imaged. Since imaging of organic and biological 

specimens labelled with AuNPs cannot tolerate as high doses as AuNPs, which can easily take 

1000 e-/Å2, a total dose of 5 ± 0.4 e-/Å2 was used to better approximate conditions for imaging 

the soft matter systems of interest.  The dose and exposure time of 2 s, was employed to 

specifically illustrate the suitability for these imaging applications [208], [209] under typical 

conditions. The error in the electron dose value was calculated from the standard deviation of 

measured electron doses over a time of 40 minutes. The liquid layer thickness was calculated 

using equation (5.1), with the mean free path of water for scattering to an angle θ = 12.6 mrad 

or greater taken as 718 nm according to Table 2. The liquid layer was thinned by setting the 

flow rate to 1 ml/min and the pressure to 400 mbar. To give a particular example, the intensity 
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ratios before thinning down were 0.62, indicating a thickness of 340 ± 71 nm. Following this, 

an intensity ratio of 0.79 was achieved, corresponding to a thickness of 160 ± 34 nm.  

It is possible to get a resolution parameter by measuring the intensity distribution across 

the edge of the particle (AuNP). The width x0.5 between the points at which the step reaches 

0.25 and 0.75 of its total intensity and therefore, the edge width of the AuNPs was used to 

characterize the dependence of image resolution on the liquid layer thickness [57], [97], [188]. 

Assuming the AuNPs exhibit a perfectly sharp boundary and the images are taken in-focus, the 

average edge width of six selected AuNPs was calculated from an error function fit of the 

respective line profiles generated by averaging the signal over a width of 3 pixels. The assumed 

error function has the form erf "#$%
&√)*, where + is the position of the edge, and - is the width in 

the measurement. The standard deviation in the mean value is shown as the error in the 

resolution estimation. A representative micrograph and line profile of an AuNP is shown in 

Figure 5.2. As the liquid layer was thinned from 340 ± 71 nm to 160 ± 34 nm, the edge width 

resolution at a dose of 5 ± 0.4 e-/Å2 improved from 1.7 ± 0.8 nm to 0.8 ± 0.06 nm.  

 

Figure 5.2: Water layer thickness optimization at two thicknesses. The water layer was thinned 

from 340 ± 71 nm (A) to 160 ± 34 nm (B) via the control of the vacuum and humid air source. 

The micrographs show a representative AuNP and a line profile (blue line) across the AuNP 

shown in the micrograph with an error function fit (orange line). Up to 6 AuNPs are averaged, 

and the error in the resolution is determined from the standard deviation of the mean value of 
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25-75% edge width resolution of these 6 AuNPs. The thinning of the liquid layer (A to B) 

improves the resolution from 1.7 ± 0.8 nm to 0.8 ± 006 nm. 

Thereafter, the ELC capabilities were benchmarked with low mass-thickness contrast 

specimens. To this end, commercial polystyrene (PS) spheres (100 nm diameter) were imaged 

in liquid layer thicknesses of 0 and 40 ± 8 nm, the electron dose used was 0.4 e-/Å2 with an 

exposure time of 0.5 s, and the images were collected at -5 µm defocus (Figure 5.3). For liquid 

thickness greater than 100 nm, the PS particles were not clearly visible. 

 

Figure 5.3: Liquid thickness optimization of Polystyrene (PS) particles in the ELC (A) TEM 

micrographs (1and 2) and their respective FFTs (FFT (1) and FFT (2)) for polystyrene beads in 

water layers of 0 (panel 1) and 40 ± 8 (panel 2) nm, respectively. The FFT fades away (1 to 2) 

as the water layer thickness increases from 0 to 40 ± 8 nm. (B) Signal ratio vs spatial frequency, 

where the data was interpolated with a third-order polynomial in 1/signal ratio. The blue and 

red line represents where the signal ratio drops below the Rose criterion (SNR 3) for the first 

time, which occurs at the spatial frequency of 0.038 and 0.028 nm-1 for water layer thicknesses 

of 0 and 40 ± 8 nm, respectively.  

As with the AuNPs, the liquid layer was thinned by adjusting the flow speed, recording 

the transmitted intensity, and calculating the thickness estimate using equation 5.1. The 

intensity scales of the two PS micrographs were set to correspond to the same maximum 

intensities, with the maximum being full transmission. The decrease in liquid layer thickness is 

observed by recording an increase in signal intensity. Additionally, the power spectrum of the 

micrograph gradually fades from FFT 1 to FFT 2, with an increasing liquid layer thickness 

(Figure 5.3 A). Determining the edge width resolution was not possible due to phase contrast 
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fringes of PS particles. Previously, the spatial resolution of LPTEM samples was characterized 

by the radial FFT dropping below the Rose criterion [210]. The spatial frequency at which the 

signal ratio falls below 3, are 0.038 and 0.028 nm-1 for 0 and 40 ± 8 nm liquid layers, 

respectively, Figure 5.3 B. 

5.5 Dose effects in ELC 

Beam induced effects are rampant within LPTEM. The radiolysis of water results in 

many species, including hydrated electrons (eh
-), hydrogen radicals (H.), hydroxyl radicals 

(OH.), and hydrogen gas (H2) from hydrogen radical combination, as discussed in section 2.3 

[211]. The effects of electron induced damage on LPTEM imaging have been studied 

extensively to find a suitable imaging regime [212]–[214]. Commercially available PS particles 

were utilized, to characterize imaging conditions for low-contrast, beam sensitive specimens in 

ELC. 

Once a controllable liquid layer was obtained in the ELC, the effect of cumulative dose 

on dry and wet PS particles was observed at a dose of 1 ± 0.08 e-/Å2 per frame. Figure 5.4 shows 

the average particle size. The details of the size calculation are given in section 5.3. In the case 

of dry PS particles, the initial average particle size at 1 ± 0.08 e-/Å2 was 111±5, which gets 

reduced to 89±7 after 30 frames. In contrast, the initial average particle size for wet PS particles 

was 109 ±4 nm, whereas, after a cumulative dose of 23 e-/Å2 or 23 frames it got reduced to 

82±5 nm. Subsequently, after a cumulative dose of 30 e-/Å2 particles were indistinguishable 

from the background. See Figure 5.5. This dissolution of the particles indicates that the PS 

particles undergo radiation damage as a function of dose, presumably via the reduction of the 

original particle mass due to beam-induced bond breaking and radiolysis. This dissolution for 

the PS particles was comparatively less pronounced in the absence of water. Note that radiolysis 

of water produces radical species that can accelerate the process of beam-induced damage 

[130], [215], [216] and the very presence of water provides a means for dissolution of the 

particle, i.e. solvation driven breakup of the particle as various bond breaking events lower the 

barrier to solvation. 
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Figure 5.4: Average size estimation of dry and wet PS particles in the ELC. Whisker plots (A) 

for dry PS particles, (B) for PS particles with water.  

 

To better quantify the cumulative dose effect on the degradation of the PS particles, the 

total signal and signal ratio was plotted against the spatial frequency. The details for calculating 

these quantities from the obtained micrographs are given in section 5.3. Figure 5.6 (A) shows 

how the total signal drops with respect to the cumulative electron dose. The dissolution of PS 

particles in water compared to its no water counterpart is evident from this data.  Additionally, 

to show the degradation more quantitively, the signal ratio was plotted against spatial frequency 

in figure 5.6 (B). The spatial frequencies at which the signal ratio for the wet PS particles drops 

below its half value for the three different electron doses of 1, 23, and 30 e-/Å2 are 0.007 nm-1, 
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0.006 nm-1, and 0.004 nm-1, respectively.  The loss of spectral density indicates blurring of the 

particle edges and hence dissolution of PS particles which can be attributed to radiation damage 

as the cumulative electron-induced damage is increasing. These measurements on PS particles 

give an idea of the electron doses that can be used with organic and other low mass-thickness 

contrast samples in the ELC. 

 

 

Figure 5.5: Polystyrene beads (100 nm) in the ELC without and with thin water layer.(A), (B) 

and (C) are micrographs of PS particles in the ELC without water.  Panels(D), (E) and (F) show 

micrographs of PS particles with water at increasing cumulative electron dose. The images were 

captured at 1 e-/Å2 per frame, and a total of 30 frames were acquired. 
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Figure 5.6: Total Signal and Signal ratio vs Spatial frequency for PS particles at increasing 

cumulative dose. (A) total signal for PS particles with and without water with respect to the 

cumulative electron dose. The graph illustrates the decay of the total signal for the two different 

cases as the cumulative electron dose is increased. No significant decay occurs when PS 

particles are dry while a considerable deterioration is observed for the wet case. Total signal 

drops to its half value at a cumulative electron dose of 23 e-/Å2,  (B) Signal ratio with respect 

to the spatial frequency for wet PS particles, at three different (1 e-/Å2, 23  e-/Å2, and 30 e-/Å2) 

cumulative electron doses. It displays how the shape of the beads decays as the cumulative 

electron dose is increased, for the PS particles in-liquid. The signal drops below its half value 

at spatial frequencies of 0.007 nm-1, 0.006 nm-1, and 0.004 nm-1 for the electron doses 1  e-/Å2, 

23 e-/Å2, and 30 e-/Å2, this decrease in the spatial frequencies for higher cumulative electron 

dose indicates the dissolution of the PS particles due to radiation damage. 
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After successfully imaging PS particles in ELC, the author performed in-liquid imaging 

of ferritin molecule, which is made up of 24 subunits, which form an octahedral sphere with an 

external diameter of 12 nm [217]. Micrographs of negatively stained ferritin dried on TEM 

grids and unstained ferritin in the ELC were collected. A dose of 0.3 e/Å2 per frame was used 

in imaging ferritin in the ELC. The average particle size extracted from images of negatively 

stained ferritin is 12 nm, while the (unstained) ferritin in the ELC has a diameter of 8 nm. On 

measuring the inner core in the negatively stained micrograph, it turns out that the iron core is 

roughly 7.7 nm in size, which indicates that only the iron core is visible in the in-liquid 

micrographs recorded via ELC TEM. 

Micrographs with horse spleen ferritin were recorded for two hours, the thin and 

homogeneous liquid layer allowed for the acquisition of 145 different locations over the whole 

viewing area. Representative micrographs at four-time points are shown in Figure 5.7. At each 

location, five micrographs were recorded with an exposure of time and dose of 250 ms and 0.3 

e/Å2 respectively, resulting in each region receiving a cumulative dose of 1.5 e/Å2 after 1.2 

seconds. The varying signal intensity with liquid layer thickness, as observed in the PS particles 

is used as a qualitative measurement of ELC liquid layer stability. The total signal of the ferritin 

micrographs as a function of time is shown in Figure 5.7 C.  
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Figure 5.7: TEM micrographs of ferritin in ELC with a thin layer and Signal ratio vs time. (A) 

TEM micrographs of negative-stained ferritin on TEM Grid. & (B) Unstained ferritin in ELC. 

Micrographs in (B) show the ability of the ELC to maintain a thin liquid layer for 120 min., (C) 

Displays the stability in the signal ratio of ferritin micrographs vs time. The dotted red and blue 

lines mark the standard deviation and mean of the signal ratio 1156 ± 409). 

The mean of the average signal intensity for signal ratio vs time plot is 1156 ± 409. The 

fluctuations in the signal ratio are within acceptable limits implying the liquid environment is 

stable for two hours.  

5.6 ELC as an improvement to standard liquid cell 

A traditional liquid flow cell setup was modified simply into an ELC via the addition of 

a 10 µm Kapton spacer and humidity control apparatus. The ELC enabled in-liquid imaging of 

different types of samples at doses not exceeding 30 e-/Å2 per frame. The resolution improved 

with decreasing the liquid layer thickness. The resolution obtained with ELC for gold particles 

is better than previously reported LPTEM measurements at similar doses. The observations 

illustrate a great potential for using this approach to get nanometer resolution on hundreds of 

ms times scales. This setup can image structural dynamics on hundreds of ms timescales and 

longer, within electron dose limits. These results are in themselves an improvement over 

previously reported environmental cell designs. Additionally, ELC enables larger usable frames 

compared to standard LPEM with bulging, thereby opening up the possibility of larger dataset 

collection for applications such as ensemble averaging as well as capturing structural dynamics. 
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6 Determining the radial distribution of liquid water using 

electrons: A step towards solution chemistry  

Water, as a simple molecule, one oxygen and two hydrogen atoms, has many 

exceptional properties, liquid at room temperature and expansion upon freezing being well-

known. This atypical behaviour is due to the electrostatic attraction between hydrogen atoms 

and the negatively charged region of the oxygen atom, i.e. to form hydrogen bonds. The open, 

nearly tetrahedral geometry of the water molecule and the network formed by the hydrogen 

bonds are of great scientific interest. The hydrogen bond structure of liquid water is responsible 

for its special properties and ultimate for its support of all life on this planet. [218]. Additionally, 

hydrogen bonding is also responsible for the extraordinary solvent capabilities of water, which 

makes it popular in chemistry. Therefore, it is crucial to characterize the structure of liquid 

water and hydrogen bond dynamics at the molecular level. However, despite the recent progress 

in experimental and theoretical methodologies, a quantitative description of its structure has yet 

to be fully resolved.  

In this chapter, the author presents the work from a submitted manuscript in which first 

authorship is shared with Dr. Michiel de Kock. The author developed the experimental setup, 

and the diffraction data were collected by the author in collaboration with Dr. Günther Kassier. 

Dr. Michiel de Kock analyzed the resulting data. This study aimed to determine the radial 

distribution functions for liquid water, to directly measure the hydrogen bond distribution, at 

ambient temperature using electrons. Unlike X-rays, electrons are charged particles and 

therefore interact with the nucleus of an atom and not the electronic orbitals. Therefore, electron 

diffraction does not impose a lower limit on the atomic numbers of the materials under 

investigation. For water, this would mean that electron scattering data is sensitive not only to 

the O-O pair distributions but also to O-H or even H-H. Obtaining such details can provide a 

better understanding of the hydrogen bond structure. In fact, we have the opportunity to directly 

measure the hydrogen bond distribution through the OH intramolecular pair distribution (bond 

length approximately 1 Å) and the O—H intermolecular pair distribution (bond length 

approximately 1.8 Å), as will be seen below. 

Since the aim is to understand the network of hydrogen bond structure in liquid water, 

it is, therefore, essential to provide the theory of hydrogen bond formation, which is described 

in part 6.1. It is also of immense importance to understand how the hydrogen bonding maintains 

the liquid structure of water and gives it several peculiar properties not present in other liquids, 
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which is treated in section 6.2. In the last part of this chapter, the details of the electron 

diffraction experiments are discussed. A brief description of the analysis done to extract the 

radial distribution curves has also been provided. Lastly, the O-O and O-H peaks in the 

distribution curve is treated and compared to that reported in X-rays and previous electrons 

studies. A brief description is also given about the coordination number computed using the 

radial peaks. 

6.1 Hydrogen bond concept 

In order to understand the hydrogen-bond dynamics of water, one must first understand 

a hydrogen bond. The hydrogen bond (H-bonds) is a distinct type of dipole-dipole attraction 

between molecules. It is a bond between an electron-deficient hydrogen atom and a region of 

high electron density. To be precise, it is of type X–H•••Y, where X and Y are the 

electronegative elements with Y holding one or more electron lone pairs. H-bonds in which  X, 

Y are N, F, or O, are the most studied [219]–[222]. There are two different types of H-bonds: 

intermolecular and intramolecular. An H-bond formed between two separate molecules X–H 

and another molecule containing Y atoms are called intermolecular H-bonds. 

In contrast, a bond formed between X–H and Y, when they are part of the same 

molecule, is called an intramolecular H-bond. The former is responsible for the strong 

interactions between molecules in protonic liquids and can heavily influence the temperature 

magnitude and heat of evaporation of that liquid. This effect is especially marked in the case of 

liquid water [218], which has the highest number of possible H bonds per mass of any 

substance. The hydrogen bonding in water not only modifies the interactions between the 

molecules it becomes essential in defining global minima of active biological molecules, the 

active structures leading to living systems.  This intimate connection is apparent in large 

molecules like DNA, protein or aromatic molecules such as Schiff base and even smaller 

molecular systems such as maleate anions [218], [223], [224]. In this chapter, the focus is kept 

on intermolecular hydrogen bonding as the aim is to determine the hydrogen bonded structure 

of liquid water that governs its special properties. 

The electronic picture in case of H-bond (X–H•••Y) can be explained in terms of four 

crucial parts which are essential in its formation. The first step is the polarization of the 

nonbonding orbital of Y by the dipole moment of the X–H group. Thereafter is the deformation 

of that nonbonding orbital due to this dipole moment which is followed by the appearance of 

quantum forces due to the overlap of electronic orbitals X–H and Y. In the final step, the partial 
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transfer of an electron from the nonbonding orbital of the acceptor atom of Y to the donor 

molecule X–H take place. The transfer of electron in a first approximation occurs towards the 

antibonding orbital of X–H followed by an s-p rehybridization of the acceptor atom on Y. 

Because of this rehybridization, the X–H covalent bond is weakened inducing a weakening of 

the force constant that binds X and H. This also increases the equilibrium distance between X 

and H and as a consequence the variation of the electric dipole moment. 

 

Figure 6.1: Schematic showing hydrogen formation in liquid water, where the dotted line shows 

the hydrogen bond and solid line the covalent bond. A slight positive charge on hydrogen is 

shown by δ+ while δ- is the small negative charge on the oxygen. 

6.2 Hydrogen bonding and structure of liquid water 

Water is the only compound that can exist in all three physical states of solid, liquid and 

gaseous under natural conditions. The unique properties of water come from the fact that water 

molecules have dipoles that assist it in making intermolecular hydrogen bonding its condensed 

phase, see Figure 6.1. Water has a dipole moment of 1.83D along its axis of symmetry. The H-

O-H angle in it is 104.5° which is somewhat less than the 109.5° of a perfect tetrahedron. 

In comparison, two nonbonding orbitals stay on its O-atom and are each occupied by 

two lone-pair electrons. It is because of this that the water molecule has two acceptor sites for 

H-bonds and two donor sites. This structure of the water molecules offers four sites for it to 

establish H-bonds with any of its neighbouring molecules. Consequently, a dense three-

dimensional H-bond network is formed, which is responsible for the stability of the essential 

configurations of biologically active molecules at room temperature. Also, the flexibility 
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required in these configurations comes from the flexibility in the H-bond network. We can thus 

call the water molecule a paradoxical molecule as it is small, with many complicated ways to 

bind to other molecules, and yet it exerts its influence over relatively huge molecules up to the 

mesoscale of biological functions.  There are long range dynamical effects at play, which 

ultimately are all determined by the hydrogen bond network of water.  It is the long range 

correlations imposed by hydrogen bond that has made this problem so difficult to understand 

as well underscores the importance of resolving the hydrogen bond network of liquid 

water[218].  

To be clear about structural relationships, water being a liquid at ambient conditions 

does not have a structure in terms of fixed average atomic positions as solids do. Nonetheless, 

they exhibit characteristics spatial and temporal coherence between atomic and molecular 

centres which are governed by intra and intermolecular interactions, respectively. Scattering 

from short-wavelength radiations such as X-rays, neutrons and electrons can directly measure 

these correlations. The signal from scattering measurements are comprised of both intra and 

intermolecular interactions. But as explained in section 6.1, only the intermolecular part is 

relevant for gaining insight about the structure of liquid water. Therefore, to evaluate the 

structure, the value for intramolecular interactions must be subtracted. The X-rays and electron 

scattering measurements cannot provide separate structure factors (e.g. O-O, O-H and H-H) as 

they are not sensitive to differentiate between the atoms. While the neutron scattering 

measurements can do this using isotope substitution [225], [226]. The neutron data is usually 

combined with the X-ray measurements to get high precision O-O pair distribution [227].  

Electron scattering can support the X-ray and neutron measurements by providing a 

separate third piece of information for the determination of partial pair correlation functions. In 

regards to the molecular correlation functions sensitive to H atom scattering processes, it can 

reveal more information than X-rays but not as much as the neutrons. Another advantage of 

using electron diffraction lies in its short incident wavelength (λ ~ 0.05), which can provide a 

much more extensive range of scattering information (k ~ 30 Å-1) or intrinsically much higher 

spatial resolution. This, in turn, can be useful in the determination of structures of more 

complicated liquids [228]. Despite the pros, that electrons have as a probe for structural 

determination of liquids, there have been very few studies so far. The reason for this lies in the 

fact that electrons have shallow penetration depths compared to X-rays. Thereby posing the 

restriction of very thin liquid samples in a high vacuum. In 1974, Lengyel and Kalman reported 

electron diffraction on liquid water in an environmental chamber with < 100keV electrons, but 
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their system lacked longevity as the water layer thickness could only be maintained for few 

seconds [228], [229]. As discussed in chapter 5, the ELC provides a thin and stable liquid 

environment for a longer time and therefore is a suitable tool to perform electron diffraction on 

liquid water. 

Additionally, previously reported work failed to address the problem of multiple 

scattering, which is considerable [228]. The work presented here overcomes both these issues, 

thereby allowing the structural determination of all types of liquid samples. There has been a 

recent work reported by Nunes et al., overcoming some of the problems stated above using a 

mega-electron-volt setup to increase the penetration depth and allow high velocity liquid jets 

[149]. Still, the experimental setup is complicated, requiring liquid jets, which still have 

uncontrollable pathlengths, and significant multiple scattering effects that are difficult to 

separate. Whereas, the technique reported is a simple table-top approach easily adaptable to any 

commercial TEM. 

6.3 Static electron diffraction on liquid water  

As discussed above, the electron diffraction measurements were performed utilizing an 

in-house developed environmental liquid cell (ELC) assembly and technique, details about 

which are provided in chapter 5. The ELC setup includes silicon nitride flow-cell technology 

which is based on that of Mueller et al. [57]. The flow-cell comprised of a pair of freestanding 

rectangular windows (30 × 100 µm2) on 3 × 8 mm2 rectangular platform of silicon. The 

thickness of the silicon nitride film used was 20 nm, and cell incorporate flow ports (inlet/outlet) 

for easy exchange of liquid/gas. The silicon nitride/silicon chips were design in-house and 

fabricated to our specification by Inc.SiMPore Inc. USA.  

The sample for the measurements was prepared by drop-casting 1 µl of deionized water 

on the bottom chip. A custom-shaped 10 µm thick polyimide (Kapton) spacer was placed in 

between the two chips. This ELC assembly was then sealed in our custom-built ELC sample 

transfer arm. One end of the flow outlets of the ELC transfer arm was connected to a humid air 

source controlled via a flow meter while the other was connected to vacuum pump. The setup 

has been described in Inayoshi et al., and in greater detail elsewhere [Azim et al., submitted]. 

The electron scattering measurements were collected on a JEOL JEM-2100 TEM 

operated at 200 keV and fitted with a TVIPS TemCam F216 camera. Darkfield and flatfield 

calibration was done on the camera before the data acquisition. The camera length was 

calibrated using a polycrystalline aluminium film. The electron dose rate for the scattering 



Ph.D. thesis 

 

66 
Sana Azim  Hamburg, 2020 

measurements was measured to be 0.09 ± 0.01 e-/Å2. All the diffraction patterns were recorded 

with an exposure time of 1 s and an effective camera length of 33.3 cm. The thickness of the 

water layer was estimated during the in-situ measurement by recording real-space images and 

determining their total image intensity counts I and I0, corresponding to the cases with and 

without an objective (half-angle of acceptance θ = 12.6 mrad) aperture respectively. The 

intensity ratio was used to compute the thickness of silicon nitride and water layer by the log-

ratio method and utilising the scattering model, which has been described at length in section 

5.3 of the previous chapter.  

The prepared ELC was transferred to the TEM using the sample transfer arm. To be 

able to measure an empty silicon nitride required for background subtraction, the pressure was 

set to -400 mbar and the flow rate to 30 ml/minute. To be sure that the silicon nitride was empty, 

the intensity ratio (I/I0) was measured, which was 0.88 ± 0.01. The corresponding thickness 

computed using the scattering model was 24 ± 2 nm. The log-ratio method and the scattering 

model underestimates the thickness of silicon nitride by 21 % as described in section 5.3. 

Therefore, 40 nm film measures as 24 nm. Thereafter, the flow rate was reduced to about 1 

ml/minute and adjusted until a stable scattering ratio of I/I0 = 0.70 ± 0.02 was obtained. The 

ratio corresponded to 160 ± 20 nm of water thickness. Twenty diffraction micrographs were 

collected under these conditions for analyzing the structure of liquid water. 

This point onwards, the author provides details of the analysis involved in determining 

the structure of liquid water, i.e., finding the position and height of O-O and O-H pair 

distribution function. In electron diffraction, the most convenient quantity to describe the 

angular distribution of the scattered electrons is the differential cross-section and the mean free 

path length, a basic theory of which has been provided by the author in chapter 2. Electrons that 

pass through an element of area dσ of the parallel incident beam area will be scattered into a 

cone of solid angle dΩ. The ratio dσ/dΩ is the differential cross-section and is a function of the 

momentum transfer Q = 4 π sin(θ/2)/λ, with the scattering angle θ and the electron wavelength 

λ. A liquid has no structure with respect to a fixed origin since the atoms are continually moving. 

Still, the atoms have well-defined sizes and closest distances of approach, hence liquids have a 

definite structure relative to the origin at the centre of the average atom. This type of structure 

is expressed by a radial distribution function 4 π r2 ρ(r) such that 4 π r2 ρ(r)dr is the average 

number of atomic centres between distances r and r + dr from the centre of an average atom. 

The scattering cross-section for N independent atoms without interference, A(Q), is given by 

the following 
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Where B(Q) is the weighing factor and ρ is the average number density of the sample. Although 

the choice of the weighing factor, B(Q), is arbitrary, still, crucial. If neglected, the scattering 

cross-section will only show the correlations between the electrons and the nucleus and not the 

atoms themselves. In X-ray diffraction, Equation 6.1 was first derived by Zernike and Prins and 

applied by Debye and Menke on liquid mercury [226], [230], [231].  

In the literature A(Q) and B(Q) have been defined in different ways depending upon the 

focus of the investigation, here they are defined as atomic and molecular [232]. In the atomic 

scheme only, the self-scattering and the incoherent scattering are subtracted and is defined as, 

 !"#($) =  & *+,+-($) +  & *+/+
++

($) 6.4 

where the sum runs over the different atoms in the sample, with the electron coherent scattering 

factor, f(Q), the incoherent scattering factor, S(Q), and the atomic concentration *+. The 

weighing factor, B(Q), is given by 

 0($) =  1& *+,+
+

2
-
 6.3  

representing the electron scattering without interference. For the molecular scheme, the intra-

molecular interference is also subtracted, and therefore A(Q) is constructed using the 

independent atom approximation or Debye model, 

 !345($) =  & ,6
6,8

($),8($) sin ($96,8):;<>,?@A
� !," +  $ %&(&(�)

&
 6.4  

With the Debye-Waller factor, -&,., and the molecular bond lengths  !," between atom 

/ and 0. The atomic or molecular structure factor is defined as,  

 (12/456 (�) − 1 =
9:;:< −  >12/456 (�)?

@(�)  
6.5  
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The relation in Equation 6.1 can be inverted via a Fourier transform connecting this structure 

factor to the radial distribution function, which is given as 

 A12/456( ) = 1 + 1
2CD E F �G(12/456(�) − 1H

I

J
K/L(� ):� 6.6  

 

The structure factor of water can be decomposed into individual contributions of different bond 

lengths, 

 (12/456(�) = MNN(NN + MNO(NO + MOO(OO 6.7  

 

The weighing factors are defined as, 

 MNN = PND(�)
9@(�) , MNO = 4PN(�)PO(�)

9@(�) , MOO = 4POD(�)
9@(�)  6.8 

These partial structure factors can then be separately transformed to obtain the pair distribution 

functions gOO, gOH, gHH. The decomposition requires different data sets which is not possible 

with X-rays or electron scattering measurements. The reason being their inability to distinguish 

between the atoms, and therefore usually the neutron scattering data is used in combination 

with X-rays measurements, as the latter can do so with isotope substitution [225], [232]. 

As stated in section 6.2, the work reported here takes into account multiple scattering in 

analyzing the electron diffraction data, while other similar electron studies failed to do so [228]. 

Thereafter, the author briefly describes the details involved in doing so. A detailed explanation 

for the same has been provided in our submitted manuscript [De Kock et al.]. Assuming that 

the scattering is concentrated on small-angle, i.e., Q ≈ 2 πθ/λ, the scattering form factor can be 

normalized by dividing it by the total scattering, 

 � =
 !

4 #! $ 2#%(&)
*

+
&,& 6.9 

 

Which gives, 

 %-(&) =  !
4 #!� %(&) 6.10 



Ph.D. thesis 

 

69 
Sana Azim  Hamburg, 2020 

 

The total scattering is related to the mean free path length with L = 1/ρσ. The angular 

distribution for n scattering events is given by n two-dimensional convolutions of single 

scattering distribution, A1(Q), with itself [97]. 

 %.(&) = %./-(&)⨂%-(&) 6.11 

 

The multiple scattering form factor is thus obtained by weighing all possible scattering events 

with their probability of occurrence and given as, 

 %⋆(3, &) = 678 9−7
; < > ?3

;@
.

%.(&)/B!
*

.D-
 6.12 

 

The multiple scattering form factor depends on the specimen thickness, t. Therefore, Equation 

6.1 can be re-written to include multiple scattering: 

 
4#!
 !E+

,EFGH
,Ω = �J%⋆(3, &) + �LM⋆( , !) " 4#$%

&

*
+[-($) − 1] /02(!$)

!$ 3$ 6.13 

 

Where Iexp is the intensity observed in the detector, I0 is the incident intensity, and B*(t, Q) is 

the multiple scattering version of the weighing factor. Also, the structure factor with multiple 

scattering contributions is given as, 

 5(!) − 1 =
64#%

7%8*
389:;3Ω  − ?@A⋆( , !)B

?CD⋆( , !)  
6.14 

 

After establishing the theoretical basis for separating the useful contributions 

(intermolecular) contained in an electron scattering signal, the author now utilizes the same to 

extract the pair distribution functions for silicon nitride. The contribution from silicon nitride 

can then be removed to obtain pair distributions for liquid water. Initially, the atomic scattering 

factors (ASiN(Q)) and normalization factors (BSiN(Q)) are constructed from the elastic form 
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factors given in Kirkland [122], and the inelastic X-rays form factors as provided in Wang et 

al. [233]. 

 

AEFG(!) = 3
7 [5EF(!) + KEF%(!)] +  4

7 [5G(!) + KG%(!)] 

                        

� !"(#) =  [3
7 %&, !(#) +  4

7 %&,"(#)]*
 

 

6.15 

 

The elastic, inelastic and total mean free path (mfp) lengths for silicon nitride can thus be 

calculated to have values 96 nm, 69 nm and 40 nm respectively. Thereafter, an atomic scattering 

model is built by computing the atomic scattering factor and normalization factor with multiple 

scattering effects, utilizing the mfp and the known thickness of silicon nitride (25 nm). The 

experimental data collected with empty silicon nitride windows is fitted to this atomic scattering 

model by minimizing the fit function, 

 -./0&12(#) − .6 − .*/# − 9 !"⋆ (;, #)
� !"⋆ (;, #)<0&12(#) >

*
 6.16 

 

Where Iexp(Q) and δIexp(Q) are the experimental error, respectively, the fitting has an electron 

dose scaling term, a0, which is different for each diffraction micrograph. Two polynomial 

constants, a1 and a2 are included to compensate for dark current and non-linear effects in the 

camera response. These are kept the same for all the micrographs. The data from twenty 

diffraction micrographs are added together using weighted mean with the inverse variance as 

the weight. To estimate the error, half the square of the polynomial is added to the variance in 

each bin. Since the atomic model does not include any interference effects, therefore it does 

have the expected discrepancies for smaller Q, see Figure 6.2.  

The atomic structure factor for silicon nitride is obtained by subtracting the atomic model from 

the experimental data and dividing with the normalization factor, 

 � (!) − 1 = [�⋆(!) − 1]$(!) 6.17 

 

The atomic radial distribution function for silicon nitride is then calculated, 
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 %&*+(,) − 1 = - 1
2./ ,3 !(� (!) − 1)456(!,)

789:

7;78<>

?! 6.18 

 

The observed peaks for Si-N, N-N and Si-Si at 1.7 Å and 2.95 Å matches well to those obtained 

from X-ray measurements, which have a Si-N height at 1.75 Å while the N-N and Si-Si peaks 

lie at 3 Å [234].  

 

Figure 6.2: (A) Diffraction micrograph collected at 33.3 cm camera length, (B) Structure factor, 

(B) the corresponding radial distribution function for silicon nitride film. In (B) there is a sharp 

drop present below 1 Å which can be attributed to the errors originating from the theoretical 

model, luckily there is no bond length in that region. The Si-N peak is observed at 1.7 Å with 

a height of 2.7, while the N-N and Si-Si bond lengths combine at 2.9 Å having a height of 1.8. 

The Si-N-SI and N-Si-N bond length appear to be at 4.3 Å with a height of 1.2. 
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Next step was the subtraction of this silicon nitride background from the experimental 

data, which comprises of signal from water and silicon nitride. For doing this, first, the radial 

distribution is transformed back to the diffraction space, where the atomic model is added to it, 

giving the silicon nitride diffraction data for smaller and larger Q values, CSiN (Q). The elastic 

and inelastic scattering values, Cwater(Q), for water can be directly imported from Wang et al.  

Therefore, the independent atom model for constructing the molecular scattering is not required 

[233]. The molecular scattering of the two can be added in the Fourier space as, 

 @ABCDEF&G+H =  I&*+@ABCDEH + @&G+K IABCDE + @&G+K @ABCDEH  6.19 

 

 

Here C᷈ denotes Fourier space variable, cwater and cSiN are the probabilities to not scatter in the 

water and silicon nitride layer respectively. For the normalization factor, one has to separate 

the effects of the hydrogen and water components. This is done by transforming the X-ray 

elastic scattering factors from Kirkland using the following equation from Sorenson [122], 

[235]. 

 � ,!" (#) = � ,!(#) $1 − &!*! +-. /−#0
230 45 6.20 

 

Where α is the atom species, this is then transformed to get the electron scattering factors using 

the Mott-Bethe formula [122]. 

 �6"(#) = 2
&7 $8 − � "(#)

#0 5 6.21 

 

The transformation was done to realize the amount of charge redistribution occurring in the 

individual form factors when the hydrogen bonds to the oxygen atom. The parameters used here 

are the same as used by Sorenson et al.[235]. Thereby, the modified form factor from which 

the normalization is constructed is, 

 9:;<>6 =  @1
3 �B"(#) + 2

3 �D" (#)E0
 6.22 
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The same procedure is applied to the normalization factors as applied for empty silicon nitride 

case to obtain, B*
water, and B*

water+SiN. The elastic, inelastic and total mean free path lengths 

computed for water are 436 nm, 230 nm, and 151 nm. The experimental data were fitted to the 

model by minimizing the loss function, as it was done for the silicon nitride. Still, for water, the 

exact thickness is not known, which is the most significant source of uncertainty for the 

outcome. The rest of the procedure of adding the micrographs together using weighted means, 

with weight given by the inverse variance, remains the same here as was done for the silicon 

nitride case. Taking the water thickness to be 130 nm, which is still close to of the computed 

value taking into account the error bar (160 ± 20), minimizes the structure below 1 Å in the 

radial distribution function.  

 

Figure 6.3: (A) Diffraction micrograph collected at 33.3 cm camera length, (B) Structure factor, 

(C) the corresponding radial distribution function for liquid water. Please note that the 
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micrograph is raw, i.e., silicon nitride background is not yet subtracted. B) compares the 

structure factor determined using the electron scattering to that of X-rays data taken from Soper 

et al. [236]. C) the drop below 0.8 Å, in the radial distribution function of the electron scattering 

data is expected to originate from the fitting procedure and the unknown silicon nitride 

scattering. The O-O peak at 2.8 Å in the electron data appears to be in good agreement with the 

X-ray scattering, while the intermolecular O-H bond length, the key hydrogen bond, is visible 

at 1.8 Å.  This feature is not observable in the x-ray data 

The structure factor and its corresponding radial distribution function obtained are 

compared to X-ray data from Soper, see Figure 6.5 [236]. In part A of figure 6.5, for the electron 

diffraction data, the first double peak observed between 2 Å and 3 Å is suppressed, and the dip 

at 6 Å is not as deep as compared to the X-ray data. The difference here can be explained in 

terms of the increased sensitivity of electron diffraction technique to the O-H bond length. In 

part B of the figure, the radial distribution of the electron and X-ray scattering data is compared.  

6.4 Predicting the structure of liquid water 

The structure of liquid water could be predicted in terms of the total number of hydrogen 

bonds a water monomer can form with its neighbouring water molecules. The radial distribution 

functions obtained from the scattering data contains information about intra- and intermolecular 

interaction occurring in liquid water at any instance of time. The intramolecular contributions 

have been subtracted. Therefore, we speculate the peak at 1.18 Å in Figure 6.5, to be an artefact 

caused by the sharp drop-off of the radial distribution function for electron scattering data below 

that value. The reason for this could be left-censoring of the silicon nitride data, and the fitting 

procedure adapted. In the radial distribution, we see two well-defined peaks. The first one at 

1.84 Å can be attributed to the hydrogen bond between the hydrogen atom of the reference 

water monomer with the oxygen atom of its nearest neighbour. Neutron scattering data by Soper 

et al. gives the O•••H bond length as 1.85 Å. When this is compared to the electron scattering 

data presented here, a relative error of 0.5 per cent is seen, suggesting a good match [237]. 

On the other hand, recently reported electron diffraction measurement on the water by 

Nunes et al., do not observe a well-defined peak for the O•••H bond length. They report a 

shoulder at 1.8 Å, [155], [236], [237]. Detection of the O•••H peak with a reasonable accuracy 

highlights the superiority of electron scattering over X-rays. With ELC TEM, a spatial 

resolution (2π/Qmax) of 0.4 Å was achieved, and longer integration times could increase this 

range significantly. In comparison, Nunes et al. can only get 0.6 Å, corresponding to a Qmax of 
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10 Å-1 and will be limited, even with relativistic electrons, due to instabilities in the jet and its 

effect on multiple scattering contributions.  Thus, we see that the ELC is a simple, robust, 

powerful tool to investigate in-liquid diffraction compared to liquid jet techniques [155]. The 

second well-defined peak at 2.84 Å displays the O•••O internuclear distance between two 

neighbouring water molecules. The peak width is related to the experimental parameter Qmax 

and the spread of atomic distances for a given structure. The intermolecular bond lengths in 

water are not well-defined due to the very nature of the hydrogen bonding, which affects charge 

distribution and bond strength.  This effect leads to a wide range in the intramolecular and 

intermolecular bond lengths, which is why the peaks corresponding to the oxygen-hydrogen 

and oxygen-oxygen intermolecular distances are broad [238]. The presented results are in good 

agreement with molecular dynamics simulations as well as X-ray and neutron scattering 

experimental measurements [236], [238], [239]. The number of hydrogen and oxygen atoms 

around the reference water monomer can be calculated using the coordination number [236], 

 

 � = 4!" # $%
&()*

+
,-.($)�� 6.23 

 

where rmin is the position of the first minima of the peaks, and   is the number density of water. 

Using Equation 6.23, and the radial distribution function which marks the peak positions and 

positions of the respective first minima for the O•••H (2.45 Å) and O•••O (3.45 Å), the 

coordination numbers obtained are 1.91 and 5.01, respectively. From these numbers, it is 

evident that the O•••H distribution with a peak at 1.84 Å comprises of around 1.91 hydrogen 

atoms out to a distance of 2.45 Å from the oxygen atom sitting at the origin. Further, the O•••O 

distribution with a peak at 2.84 Å has approximately 5.01 oxygen atoms out to a distance of 

3.45 Å from the central oxygen atom. These numbers and ranges propose a tetrahedral structure, 

i.e., approximately four hydrogen bonds per water molecule at any instant of time. This 

structure is in a good agreement to the neutron scattering measurements reported by Soper et 

al. in 1986 and with the combined results obtained from X-rays, neutron and Monte Carlo 

simulations, by Soper et al. published in 2008 [237], [240]. The predicted value is somewhat 

above the maximum limit of 2 hydrogen bonds per molecules, as suggested by Wernet et al. 

[241], [242]. A comparative molecular dynamics simulation, in parallel with a temperature 
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dependence, can be done to get more insight into the dynamic nature of the hydrogen bonding 

of liquid water.   
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7 Observing aggregation dynamics in γS crystallin molecules  

Protein aggregation is known to be the root cause of many prevalent diseases such as 

Alzheimer, Parkinson and sickle cell anaemia. Cataract, which is the disease responsible for 

48% of the world’s blindness, is caused by aggregation of lens crystallin proteins [243]–[245]. 

With the onset of ageing, covalent protein damage starts accumulating via specific pathways 

which are not entirely known [244]. The present research findings speculate these to be UV 

radiation, mutations or metallization.  

There have been a few studies in the past focused on damaged caused in the eye lenses 

due to protein aggregation induced via various radiations [246]–[250]. Despite these studies, 

not much insight has been gained for the actual mechanism involved in aggregation. To this 

end, work has been done by the author in collaboration with Dr. Günther Kassier (MPSD) and 

a team from Department of Chemistry, UCI, to investigate the aggregation mechanism and the 

types of aggregates formed when human γS-crystallin is exposed to ultraviolet (UV) A and B 

radiations. The morphology of these aggregates is also compared to aggregates formed by acidic 

pH, mutation and metal binding. This chapter is based on the author’s contribution to the 

recently reported work that Human γS-crystallin copper binding helps buffer against 

aggregation caused by oxidative damage [251].  

In the first section, the author provides a short introduction to the different crystallin 

proteins present in the human eye lens and why is it necessary to study the aggregation 

mechanism involved. In this entire study, an important aspect was making the protein 

aggregates and being able to get TEM snapshots of them at several timepoints during their 

formation. The author has described the different methods and procedure involved in preparing 

the samples in section 7.2. Subsequently, in the next three sections, the author gives a thorough 

description of the experimental findings obtained. To elaborate, in section 7.3, the author 

compares the aggregates formed via UV to those of pH-induced. Thereafter, the aggregates 

formed due to the presence of point mutations are discussed by the author. The discussion is 

done keeping in mind the aggregates formed via the other two methods. Finally, the author 

presents the results on aggregation caused due to metal addition.  

7.1 Importance of studying aggregation in γS-crystallin 

The transparency in the human eye lens relies on the proteins present in there. Mainly, 

the responsible ones are α-crystallin and βγ-crystallins. These are present at a concentration as 
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high as 400 mg/ml in a grown up’s lens fibre cells [246], [252], [253]. The β- and γ-crystallins 

are supposedly the structural proteins. At the same time, α-crystallin is believed to be involved 

in additional chaperone activity which is to bind the misfolded proteins to avoid aggregation. 

When aggregates of such partially unfolded or covalently damaged proteins are formed, the 

lens loses its transparency, causing cataract. The focus of this study is γS-crystallin which is the 

main protein in the cortex of the lens. It is also believed to be the most stable one [245]. Despite 

the stable nature, a few of its variants G18V, D26G and G57W are known to cause hereditary 

cataract [245], [253]–[257]. Therefore, studying the mechanism involved in the aggregation of 

these proteins is very crucial in fighting the disease. In the past, there have been studies linking 

the disease to different modifications such as deamidation, methylation disulphide bonds, UV 

photodamage, mutations and metallization [254], [256], [258]–[263].  

Here the author aims to study the morphological evolution of the aggregates formed via 

UV A and B radiation with time. The fact that the human eye lens is exposed to UV radiations 

from the sun regularly marks the importance of this study. Although incident UV light is 

efficiently quenched by the photo-protective molecules present in the cornea. Still, the lens is 

regularly exposed to 0.116-0.99 mW/cm-1 of UVA and 1.2 x 10-4-4.4 x 10-4 mW/cm-1 UVB 

radiation [245], [264]. Over one’s lifetime, this exposure eventually depletes the available 

photo-protective molecules, increasing the radiation stress on the crystallins. While exact 

physiological longer-term, low flux measurements are not easily studied, excess UVA or UVB 

radiation results in tryptophan degradation products such as N-formyl kynurenine and 

kynurenine, which destabilize their surrounding hydrophobic core [245], [246], [265]. 

There are a few protein-related hereditary diseases linked to point mutation. These 

mutations lead to reduced solubility in proteins and consequently, aggregation. Aggregates 

formed can be either amyloid type, which is the case in the early on-set of Alzheimer diseases 

[245], [266]. These could also be assembled aggregates from the monomeric unit as is the case 

in sickle cell anaemia [245], [267]. Therefore, it was crucial to understanding the nature of 

aggregates formed via mutation and how much it differed if any with UV induced aggregates. 

Additionally, the mutated γS-crystallin (G18V, D26G and V42M) were irradiated with UV. 

The last step was to check if any different morphology or increment in the population of the 

already formed aggregates occur.  

Metal ions have been known to cause amyloid type aggregation responsible for 

Parkinson and Alzheimer via metal-induced conformational changes and metal-catalysed 

oxidative damage [268]–[270]. Therefore, it was intriguing to investigate the effect of metal 
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addition (Cu2+, Zn2+) to the γS-crystallin protein and compare the morphology of aggregates 

with those formed with UV irradiation or mutation.  

7.2 Sample preparation 

UVA and UVB radiation were studied separately to deduce potential differences in the 

resulting aggregates. UVB is readily absorbed via tryptophan residues whereas UVA is not; 

however, both wavelength ranges have been demonstrated of oxidizing γ-crystallins. 

Additionally, native aggregates of cataractous mutants γS-G18V, γS-D26G, and γS-V42M were 

measured to access the effect of UV-radiation on proteins with reduced stability.  Copper and 

zinc-mediated aggregates were also studied. Elevated levels of copper have been observed in 

diabetic lenses, and copper has been shown to induce γ-crystallin aggregation via oxidation and 

disulfide cross-linking. Zinc-mediated aggregation is driven almost exclusively through 

intermolecular bridging of cysteine side chains and therefore provides an aggregation model in 

which no structural modifications occur. 

All samples were prepared by Kyle W. Roskamp, Department of Chemistry, UC Irvine. 

The mutants γS-G18V, γS-D26G, and γS-V42M were made using site-directed mutagenesis of 

the γS-WT construct. All proteins were expressed via high density auto-induction and 

purification, as previously described in Roskamp et al. [245], [271]. Briefly, proteins were 

removed from the lysate via nickel affinity, N-terminal his-tags were cleaved using TEV 

protease (produced in-house), re-run over a nickel affinity column, and purified using size 

exclusion chromatography. Samples were store at 4 ℃ until measurements or further 

preparation.  

The UVA irradiation was performed in the Department of Chemistry, UC Irvine. 

Therefore, the author only provides a very brief detail for it. Protein solutions at 6 mg/mL (2.5 

mL) or 100 mg/mL (1.5 mL) were irradiated with 355 nm light generated using a 10 Hz Nd: 

YAG laser. The author performed UV B irradiation for the protein samples with an in-house 

build setup. Aggregation of 6 mg/mL or 100 mg/mL γS-crystallins via 278 nm UVB radiation 

was accomplished using two 70mW light-emitting diodes (LEUVA66H70HF00, Seoul, Korea) 

at 5 mm distances (120-degree view angle) yielding a mean power density of 58 mW/cm2. 

To study the effect of metals on γS-crystallins, Protein samples were extensively 

dialyzed against demetallized 10 mM HEPES buffer and concentrated to 6 mg/ml. 10 

equivalents of CuCl2 or ZnCl2 were added to 1 ml samples and allow to incubate at room 

temperature overnight. 
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The morphology of the γS-crystallin aggregates formed subject to acidic buffer, UV 

irradiation, mutation, and metal ion treatment were investigated by transmission electron 

microscopy (TEM). Negatively stained samples for TEM were prepared on commercial 

Carbon-coated 400 mesh Copper grids (Plano GmbH, Wetzlar, Germany). The grids were made 

hydrophilic by glow discharge treatment, whereupon 2 µl of sample solution was applied and 

allowed to soak for 45 seconds before blotting. The grids were then rinsed twice with 50 µl 

deionized water, followed by blotting. Negative staining was performed in Dr. Dominik 

Oberthuer’s laboratory.  The procedure includes applying 4 µl of a 1 percent Uranyl Acetate 

solution, followed by immediate blotting. Application of 4 µl of Uranyl acetate was then 

repeated, this time being allowed to soak for 20 seconds before a final blotting step.  

TEM micrographs were then recorded in a JEOL JEM 2100, in bright field mode, with 

an accelerating voltage setting of 120 kV. To get the size distribution for the aggregates, to each 

micrograph a bandpass filter was applied manually followed by automatic thresholding using 

the ImageJ software and finally the whisker plots were prepared in Origin software. Apart from 

TEM, other methods like Absorbance, Fluorescence, FTIR (Fourier-transform infrared 

spectroscopy), Mass-Spectroscopy, SDS-PAGE and PEGylation were also performed to study 

the aggregation behaviour of γS-crystallin. These measurements were performed by Dr. Kyle 

W. Roskamp, UCI and are described in Roskamp et al., which is an accepted manuscript. 

7.3 Aggregates formed via UV A/UV B compared to those by low pH   

Work by King et al., on the exceptional fluorescence quenching efficiency of γ-

crystallin has strongly evidenced their photoreactive capacity against UVB. The quenching 

capacity of γ-crystallins due to rapid electron transfer between the tryptophan ring and proximal 

N-3 backbone carbonyl is disrupted upon tryptophan oxidation [272]–[274]. Mimics of 

tryptophan oxidation products in γD-crystallin exhibit dramatically reduced structural stability 

and increased aggregation; however, tryptophan posttranslational modifications (PTMs) 

represent a fraction of all observed lens crystallin PTMs [275]–[277]. How deamidation, 

isomerization, oxidation and other accumulated non-enzymatic PTMs lead to light scattering 

aggregates has remained elusive, in part due to a lack of structural data. Here we have 

investigated how UVB and UVA irradiation of γS-crystallin leads to protein aggregation. 

Tryptophan and other aromatic residues do not absorb UVA radiation. Therefore, sufficient 

UVA (or UVB) radiation may generate reactive oxygen species or damage susceptible amino 

acids. Characterization of γS-crystallin aggregates from UVB and UVA irradiation, therefore, 
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provides a method to assess how different UV wavelengths and indirectly the extent of aromatic 

oxidation, may alter γS-crystallin aggregates. 

 UVA and UVB treatments were applied to 6 mg/ml and 100 mg/ml samples of γS-WT 

and measured over 90 minutes, to investigate aggregation from UV irradiation. While no 

discernible difference was visible between the aggregates from both treatments, UVB exposure 

induced aggregation more rapidly. In both treatments at 6 mg/ml, sphere-like aggregates 

between 20-40 nm formed initially. These aggregates grew large and less defined in shape with 

increasing UV exposure. Although smaller aggregates remain present at all times, see Figure 

7.1. Extrapolating from the observed distribution of aggregates which are assumed to represent 

the various stages of aggregation under UV irradiation, nucleation resulting in small spherical 

clusters, appear to be the first stage of aggregation. As aggregate size increases, the shape of 

the aggregates becomes highly diverse. Remarkably, both irradiation treatments at 6 mg/ml and 

100 mg/ml did not affect the observed size and distribution of aggregates, see Figure 7.2. 

Aggregates formed under low pH condition mostly have fibril nature which is not the case with 

UV induced aggregates. The latter leads to amorphous aggregates. Figure 7.3 illustrates the 

difference between the two different types of aggregation [245]. 
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Figure 7.1: γS-WT irradiated using UVA and UVB for 10 min (0.5 KJ/cm2, 34.8 J/cm2), 20 min 

(1.1 KJ/cm2, 69.6 J/cm2) and 30 min (1.6 KJ/cm2, 104.4 J/cm2). Under both treatments, globular 

aggregates form and these constituents associate to generate larger aggregates. 
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Figure 7.2: Irradiation of γS-WT from UVA (1.6kJ/cm2) and UVB (104.4 J/cm2) produces 

aggregates with similar morphology independent of sample concentration during irradiation. 

7.4 Aggregation from mutation compared to UV irradiation 

While the accumulation of nonspecific PTM’s from UV radiation, reactive oxygen 

species and other exogenous factors eventually culminate in γ-crystallin aggregation, 

cataractous mutations provide insight about the minimum change necessary for aggregation. 

Hydrophobic-hydrophilic core residue conversions (γD-W43R), seemingly innocuous 

substitutions (γS-S39C, γS-V42M), side-chain removal (γS-D26G, γD-E107A), and charged 

residue swaps (γC-R48H, γD-R58H) are sufficient for cataract formation. 
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Figure 7.3: Samples of γS-WT without treatment, after UVA irradiation, and after incubation 

at 37 ◦C at pH 2. UVA aggregates are globular while those prepared at low pH exhibit fibrillar 

morphology 

Cataractous γ-crystallin point mutants are useful references for investigating the effect 

of site-specific modifications and provide a basis for understanding how PTMs from UV 

radiation and other exogenous sources may induce cataract. Aggregates of γS-G18V, γS-D26G, 

and γS-V42M were allowed to form without external provocation (native) and compared to 

samples irradiated with UVA for 30 minutes, see Figure 7.4. Both mutant and UVA irradiated 

aggregate morphologies are primarily spherical, with coarse edges that bare no characteristic 

features. To get the size distribution for the aggregates, to each micrograph, a bandpass as 

described earlier in this chapter.  
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Figure 7.4: Aggregates of resulting from cataractous mutations are comparable in size to those 

formed via UVA photodamage 

The particles were assumed to be roughly circular for calculating the particle diameter, 

and then box whisker was plotted in Origin software. γS-WT aggregates were only observed 

following UVA irradiation, with an average aggregate diameter near 26 nm. For γS-D26G, γS-

V42M, and γS-G18V, the native sample aggregate diameters were observed at 26, 20, and 35 

nm while UVA-irradiated sample diameters were 22, 27, and 28 nm respectively. It is worth 

noting that the size estimates here may be subjective to the imaged sample areas; however, all 

samples exhibit homogeneity in aggregate particles sizes, with a primarily 20-40 nm diameter 

aggregates. Larger aggregates can be readily observed within the measured samples, in which 

the constituents are particles within these ranges. Although it is not discernible why the 

aggregates populate this size range, both native and UV-induced aggregates behave similarly 
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7.5 Aggregates induced by the mixing  zinc and copper ions 

Exogenous factors such as α-crystallins chaperones and antioxidant metabolites play an 

important role in buffering the environment of lens fibre cells for γ-crystallins. In addition to 

calcium homeostasis, the regulation of zinc and copper levels are essential as cofactors for α-

crystallins. Elevated levels of these and other metal cations concentrations are observed in 

lenses of smokers, diabetics, and cataract patients, and have been shown to aggregate γ-

crystallins [263], [278], [279]. Excess of zinc ions results in γ-crystallin aggregation through 

intermolecular bridging, which is reversible via the addition of metal chelating agents [263], 

[278], [279]. Incubation of copper with γ-crystallins produces similar effects, but also, weakly 

reduce protein stability and causes PTMs. 

Further, the addition of metal chelating agents only partial reverses Cu(II)-mediated 

aggregation, evidencing other mechanisms of aggregation [263], [278], [279]. Both zinc and 

copper-mediated aggregation serve as useful references for UV induced aggregation. This 

comes from the fact that zinc aggregates occur strictly through bridging interactions and copper-

induced oxidation of sidechains strongly parallels the high levels of oxidation observed in senile 

cataract γ-crystallins. 

TEM images of γS-WT treated with Cu2+ and Zn2+, shown in Figure 7.5, demonstrate 

similar morphology to γD-WT aggregates previously reported [263]. While clusters of Cu(II) 

induced particles tend to be smaller than Zn(II) induced ones, the constituents are similarly 

sized and amorphous in morphology. In comparison to UV-induced aggregates, clusters of 

Cu(II) and Zn(II) aggregates are observed with more homogenous sizes. This is consistent with 

the ability of the metal cations to interact with any protein available, leading to similarly-sized 

aggregate forming concurrently. In contrast, UV-induced damage is likely far more 

inhomogeneous. The uneven distribution of aggregates most likely leads to nucleation, enabling 

some clusters to develop early and grow larger, leading to a broader range of aggregate sizes. 
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Figure 7.5: Radiation and metal-induced aggregates of γS-WT 

 

7.6 Predicting the possible aggregation mechanism 

Comparing the morphology and size of the distribution of the aggregates, it could be 

inferred that UV radiations have a similar impact as the point mutations because they form 

similarly sized (20 - 40 nm) primarily spherical aggregates which appear amorphous. While an 

acidic pH produces fibril type aggregates. The mechanism of UV induced aggregates becomes 

more apparent when they are compared to homogeneous metal-induced aggregation, consistent 

with the ability of metal cations to interact with any protein available. In contrast, the UV 

radiation produces inhomogeneous damage, similar to point mutations. Therefore, explaining 

the uneven distribution of the aggregates which most likely leads to nucleation enabling some 

clusters to develop early and grow, thereby giving a broader size range. 
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8 Conclusion and prospects 

This PhD work represents a contribution to the development of liquid cells and their 

application in TEM to perform real space imaging and diffraction of inorganic, organic and 

biological specimens in liquid. During this Ph.D., work was done on both development and 

application fronts. The author was actively involved in the fabrication and characterization of 

existing liquid cell technology in the group. In addition to this, the author was involved in 

designing the elliptical multi-window liquid cell for phase-contrast imaging. The most 

important achievement of the work presented here is the development of the environmental 

liquid cell technique, which has excellent potential in performing a wide range of real space 

imaging and diffraction measurements in solution phase. Hereafter, a chapter-wise summary of 

the work done by the author during this thesis is provided 

20 nm thin silicon nitride windows for nanofluidic cells were fabricated, as described in section 

3.2. Performing imaging/diffraction with these cells was very challenging as can be seen from 

the work presented in Appendix 1. The main factor for the poor imaging conditions of these 

cells was the window bulging, which was characterized and found to be ~ 3 µm, as described 

in section 4.2. The problem of micron thick specimen due to window deformation was resolved 

by the development of the environmental liquid cell (ELC) setup, which worked by combing 

the idea of an environmental cell with the nanofluidic cell technology as presented in chapter 

5. 

The ELC setup, discussed in section 5.1, is capable of maintaining a stable liquid environment 

and can perform in-liquid imaging and diffraction of different types of specimens such as metal 

nanoparticles, polymers or biological macromolecules. Proof of principle measurements 

conducted on gold nanoparticles, polystyrene beads and ferritin molecules were successful and 

a controllable liquid thickness as thin as 160 nm was possible, which led to a spatial resolution 

of 0.8 nm on imaging of gold nanoparticles.   

The ELC TEM technique was also utilized to obtain electron scattering data from liquid water 

at ambient temperature as presented in chapter 6. Minimal multiple scattering was ensured by 

maintaining a liquid thickness below 200 nm. Scattering data was sufficiently good to enable 

the O•••H and O•••O bonds to be determined as 1.84 Å and 2.84 Å respectively with a spatial 

resolution of 0.4 Å. These bond lengths were further utilized to estimate the total number of 
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hydrogen bonds per water molecule which was found to 3.8, implying a nearly tetrahedral 

structure. 

Neither the standard liquid cell technology nor the ELC TEM was able to capture the 

aggregation of small protein molecules, human γS-crystallin, as they were exposed to different 

external stimuli. Negative stain electron microscopy was used to investigate the mechanism and 

type of aggregation taking place in these proteins, as discussed in chapter 7.  The important 

inference from the measurements is that the UV radiations produces inhomogeneous damage 

to γS-crystallin, which is similar to the point mutations, and this mechanism is different from 

acid-induced and metal-invoked aggregation. 

Although the ELC system was able to resolve the issues of uncontrolled liquid thickness 

and bulging, still the background scattering from 20 nm thick silicon nitride was significant, 

section 6.3. Additionally, this system was based on free-standing large single-window design 

without any support structure, thereby prone to rupture. To be able to solve all the above-said 

problems, a new liquid cell has been designed. This comprises of small elliptical multiple 

windows (minor axis = 5 µm, 10 µm, and 15 µm) inside a large 400×600 µm2, with 10 nm thin 

silicon nitride supported by 30 µm thick silicon support structure. The fabrication is in progress, 

as discussed in section 4.3. This new design, elliptical multi-window liquid cell, will be 

available for imaging and diffraction applications in a few months. 

Outlook 

It has been shown that the ELC offers controllable liquid thickness, full viewing area 

and sub-nm spatial resolution. These features of the ELC can be utilized to perform ensemble 

averaging on molecules such as ferritin and obtain high-resolution 3-D structures of them in 

their native state. The environmental liquid cell also resolves issues such as bulging, 

uncontrolled liquid thickness and difficulty in specimen/reagent exchange. Nonetheless, the 

technique does not work very well at elevated temperature. At high temperatures (>40°C), the 

condensation phenomenon of the moist air on the window is slowed down, resulting in drying 

out of the specimen. A possible solution could be to mount an on-chip heater/cooler in close 

vicinity to the silicon nitride window, which will only elevate the local temperature and leave 

minimal effect on the humid air flowing through the holder. The cooler will help in instant 

cooling down after acquiring the micrographs at a particular temperature. 
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The author has successfully reported the structure of liquid water at room temperature 

using the ELC TEM technique. Provided that the temperature control in the ELC works as 

described above, static diffraction on liquid water at different temperatures ranging from 4°C – 

90°C can be performed. These measurements will help in estimating the fluctuations in the 

dense hydrogen-bonded network upon a change in temperature, which in turn would be 

reflected in the atom-atom pair distribution function. For a deeper understanding of the thermal 

fluctuations in liquid water, and how it affects the hydrogen bonding network present in it, an 

optical pump-electron probe measurement is needed. Such an experiment will require a fast 

sample refreshing rate (above 1 kHz ), and an optical pump laser to excite the OH stretching 

vibrations centred at 3400 cm-1 as these vibrations are very sensitive to hydrogen bonds [189]. 

The existing liquid cell sample transfer arm in the Miller group has provision to include an 

optical fibre which can be connected to a  laser to carry-out in situ laser excitation.  

The ability to excite specimens in situ can be used as a platform for several other 

measurements where an optical trigger can activate the reaction dynamics, for instance 

removing the photoprotective layer of caged molecules to stimulate them [280], [281]. 

The idea of the elliptical multi-window design for phase-contrast imaging holds a lot of 

potential in unravelling the structure and dynamics of numerous biological macromolecules at 

very high resolutions. These new generation liquid cells along with a high-speed camera having 

two orders of magnitude faster readout speed and an ultra-bright electron source for capturing 

structural dynamics in a single shot, avoiding beam-induced damage, could provide the missing 

link in the field. The faster camera and the ultra-bright source are being developed in the Miller 

group [282]–[284]. 
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Appendix 

Appendix 1: Measurements performed using 20 nm thin liquid cell, without ELC system 

As stated in chapter 4, the bulging of the as-fabricated 20 nm thin liquid cells was 

significant (3 µm), and therefore it was challenging to perform imaging on organic/biological 

specimens. This difficulty was realized by the author while studying the interaction mechanism 

of liposomes and DNA in real-time using these liquid cells. Further details about this are 

provided henceforth.  

Cationic liposomes and DNA (deoxyribonucleic acid) are known to form complexes 

called lipoplexes, in a process known as lipofection. These lipoplexes find application in gene 

delivery to cells. Therefore, it is of scientific interest to learn the morphology of the complexes 

formed and mechanism involved. Different conformations of lipoplexes have been mentioned 

in the literature, such as the configuration with a short-range lamellar structure composed of 

flat lipid bilayers and DNA packed between them [285]–[291], or a conformation where the 

DNA molecules are captured inside a lipid bilayer forming cylindrical complexes which are 

closely packed on a hexagonal network [287]. Another possible structure is one where the 

positively charged vesicles confer to the extended DNA molecule, the so-called beads on a 

string model [292]–[296]. The last conformation predicted is the one where DNA is expected 

to collapse and attach in the form of a globule into the outer surface of positively charged 

vesicles [297], [298].  

In order to understand the interaction mechanism between liposomes and DNA, a 

mixture of 9 µl lipofection reagent, which is a 1:1 (w/w) liposome formulation of the cationic 

lipid N-[1-(2,3dioleyloxy)propyl]-n,n,n-trimethylammonium chloride (DOTMA) and dioleoyl 

- phosphatidylethanolamine (DOPE) in membrane filtered water and 4 µg DNA was incubated 

for three hours, drop casted on a no flow liquid cell and imaged in TEM. Liposomes without 

any DNA were imaged as a control; on the comparison, a clear difference can be observed. 

Figure 1 shows the in-liquid micrograph. Although the quality of the images in terms of 

resolution is not ideal, it was possible to take a few snapshots of the larger complexes formed 

on the edges of the liquid cell window. The liposomes with no DNA do not show any interaction 

and appear smaller in size (30-50 nm). In the presence of negatively charged DNA, the cationic 

liposomes interact with the DNA molecules to form beads on a string structure.  
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These results are not conclusive, and further measurements are required to make any 

strong claim. Moreover, it was also not possible to capture the complex formation in real-time, 

the reason being the damage caused due to the electron beam. Therefore, one may observe the 

interaction in-situ by refreshing the liposome sample rapidly during imaging. Although the 

demonstrated resolution and flow capability of the ELC TEM may allow such measurements, 

the author has kept this out of the scope of this PhD work. 

 

Figure 1: In-liquid TEM micrographs (A) only liposomes, (B) liposomes mixed with 4 µg DNA 

and incubated for three hours at room temperature. 
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Appendix 2: Imaging performed using ELC TEM to utilize the idea of single-particle 

ensemble averaging 

The author has mentioned in chapter 5 about utilizing ELC TEM for in-liquid single-

particle ensemble averaging. Single-particle algorithms are commonly used with cryo-EM to 

acquire high-resolution three-dimensional structures of beam-sensitive specimens with poor 

mass-thickness contrast. The same concept can be applied to LPTEM and attain atomic 

resolution for small biological molecules which is otherwise hard to achieve. The author 

performed initial measurements on two systems (T7 bacteriophages and gold-labelled antibody) 

very commonly used in the cryo-EM community. The author hereafter provides the preliminary 

results obtained. 

Bacteriophage T7 is a virus that infects vulnerable bacterial cells. Morphologically, 

these have an icosahedral head (60 nm) and a short tail. T7 samples were received from a 

collaborator and were used as received. The ELC sample preparation was done, as described in 

section 5.2. Briefly, the bottom chip was hydrophilized, and 0.5 µl of the sample was drop cast 

onto it. Micrographs were recorded; for comparison, the same sample was loaded onto a TEM 

grid. Figure 2 shows the T7 virus dried on a grid (A) and in a thin layer of liquid in the ELC 

(B). 

 

Figure 2: TEM micrographs of bacteriophage T7, (A) on a TEM grid, (B) in a thin layer of 

liquid inside an ELC. 
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A single particle algorithm requires a few hundred frames, each with at least 10 

particles. Upon exposing the virus to a total electron dose of 1.6 e/Ǻ2, substantial damage was 

observed due to which these could not be used as a model system to obtain high-resolution 

structures in-liquid.  

As the second system gold-labelled antibodies (goat anti-mouse IgG, with 1.4 nm 

nanogold) procured from Nanoprobes, Yaphank NY was considered. Zhang et al. reported a 

“Y” shape of antibodies with dimensions of 15-18 nm. Most of the antibody particles have three 

ring-shaped domains with diameters 5.5-7.5 nm, which linked to two Fab domain and one Fc 

domain [299]. Gold labelled antibody samples were used as received, and an ELC sample 

preparation was done as previously described. The negatively stained sample was also prepared 

as a reference by using 2% Sodium silicotungstate. Negative stained (A) and in-liquid 

micrographs (B) were recorded at a total electron dose of 62 e/Å2 and 5.6 e/Å2, respectively 

(figure 8.4). 
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Figure 2: In-liquid TEM micrographs showing the degradation of the T7 virus as the cumulative 

electron dose increase from 0.16 e/Ǻ2 (A) to 1.6 e/Ǻ2 (I). 

Because of reduced contrast and small size of the antibodies, the actual structure of them was 

not visible in the in-liquid micrographs. Still, the nanogold which acted as a marker displayed 

“Y” shape indicating the presence and orientation of the antibodies.  A dataset of a few hundred 

frames was successfully collected, but the analysis here is challenging because of poor contrast 

from the particles. 

 

Figure 3: Micrographs showing gold-labelled antibodies, (A) negative stained, (B) in ELC with 

a thin layer of liquid. In the stained micrograph, the particles are densely packed and difficult 

to separate individual ones. The particles marked with red circles have a roughly Y-shaped 

structure and size in the range 18 nm. The in-liquid micrograph fails to show the actual 

antibody, but the nanogold particles can be observed with a somewhat “Y” shape structure with 

size in the range 15-18 nm. 
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